878 resultados para Sea Benthic Fishes
Resumo:
During the Indian Ocean Expedition of the German research vessel "Meteor" and the following cruise with the Pakistani fishing vessel "Machhera" in February and March 1965, sediments were sampled from the shelf, continental slope and the Arabian Basin off Pakistan and India. The biostratigraphic studies are based on sedimentary material from 24 sediment cores up to 480 cm long and 100 grab samples. The faunal residues of the > 160 µ fraction (chiefly foraminifera and pteropods) were determined and counted in order to get an idea of the climatic conditions during the Late Quaternary of this region. Biostratigraphic correlations of these Late Quaternary deposits are only possible if the thanatocoenosis of the surface sediments are well known. The analysis of the benthonic foraminiferal populations resulted in the definition of several foraminiferal facies. The following sequence of forarniniferal facies, named after their most characteristic members, can be distinguished from the shelf to the deep-sea: 1. Ammonia-Florilus facies ; 2. Ammonia-Cancris facies; 3. Cassidulina-Cibicides facies; 4. Uvigerina-Cassidulina facies ; 5. Buliminacea facies ; 6. deepwater facies, partly with Bulimina aculeata or with Nonionidae. On the upper continental slope there is a zone extremely poor in benthonic foraminifera. In this water depth the oxygen minimum layer (0.05-0.02 ml/l) of the water column reaches the slope. Almost no connection can be observed between the living and the dead foraminiferal population of the same sample. The regional distribution of the planktonic foraminifera from plankton tows as well as from the surface sediments shows marked differences in the species composition of faunas from different regions within the area of investigation. That depends on oceanographic conditions such as upwelling, dissolution of carbonate at great depths etc. Based on the results of faunal analysis of samples from the recent sea-floor, a biostratigraphic subdivision of the sediments in the cores was established. The following biostratigraphically defined sections could be distinguished from the top of the sediment cores downwards : 1. Relatively cool climatic conditions are reflected by the foraminifera of the uppermost core sections. 2. The next section is characterized by much warmer conditions (Holocene climatic optimum). The C-14 ages of this interval range from 4000 to 10 000 years B.P. according to different authors. C-14 dates on the material investigated do not give reliable clues. 3. Foraminiferal populations adapted to much colder conditions can be observed in the underlying core section. The boundary between the warm climate reflected by the foraminifera of section 2 and the cold climate (section 3) is relatively sharp. It can be correlated from core to core over the whole area investigated. The cold climate sediments of section 3 are underlain by different cool-, warm- and cold-climate sediments which can only be correlated over very short distances. Since it appears certain that the last really cold conditions ended earlier in the Arabian Sea and its vicinity than in Europe it is recommended not to use the European stratigraphic terms for the Quaternary. Because of the lack of reliable absolute sediment ages for the cores no exact sedimentation rates can be given. According to rough estimates, however, the rates are 1-2 cm/1000 years in the deep basin and up to 40 cm/1000 years on the upper continental slope. Sedimentation rates are always larger near the mouth of the Indus-River than off South India at stations of about the same water depth. Planktonic gastropods (mainly pteropods) cannot be used for biostratigraphic purposes in the region under consideration. All of them seem to be displaced from the shelf. Their distribution there is given in.
Resumo:
A study of distribution of live individuals of benthic foraminifera in sediments of the Sea of Okhotsk and of the Northwestern Basin of the Pacific Ocean shows that they can be present in sediments up to depth of 30 cm and probably can live there for long periods, sometimes forming high concentrations. Living individuals in the subsurface layer often account for more than 50% of total biomass, which varies from 1 to 21 g/m**2 in different morphological structures. The largest biomass values are attained in underwater rises embedded in relatively warm, oxygen-saturated Pacific waters. Minimum total biomass concentrations occur in deep-water depressions where stagnation phenomena are observed. Foraminifera biomass everywhere decreases gradually with increasing depth from the surface of sediments regardless of relief, depth, and nature of sediments.
Resumo:
Biostratigraphy and paleoenvironmental history of deep and surficial waters of the Japan Sea are addressed using sequences recovered from the floor of the backarc basin. The study is divided into two parts: (1) foraminifer biostratigraphy and paleoenvironmental assessment of sedimentary sequences recovered from above igneous basement at the four sites and (2) detailed planktonic foraminifer paleoenvironmental analysis of Quaternary and Pliocene sequences from Sites 794 and 797 in the Yamato Basin. A total of 253 samples were examined for the foraminifer biostratigraphy and 325 samples for the detailed paleoenvironmental study of Quaternary and Pliocene sequences. Low abundance and sporadic occurrence of foraminifers limited interpretation of results. Foraminifer-bearing intervals were correlated where possible to diatom and calcareous nannofossil zonations, and the sequences were successfully assigned to the foraminifer zonation of Matsunaga. Unfortunately, extensive barren intervals and sporadic occurrences of planktonic foraminifers prevented zonation of Quaternary and Pliocene intervals, although some interesting conclusions about paleoenvironment were possible and are listed below. A sequence of Neogene (sensu lato) paleoenvironmental events were identified: (1) deepening of the Yamato basins to middle bathyal depths by the early to middle Miocene, an event contemporaneous with the age of some deep basins known from uplifted sections adjacent to the Japan Basin; (2) cooling of the Japan Sea in the early middle Miocene; (3) oxygenation of deep waters in the late Miocene; (4) further cooling of surficial water masses between the Olduvai Subchron and the Brunhes/Matuyama Boundary; and (5) extermination of lower middle bathyal faunas and replacement by upper middle bathyal faunas near the base of the Quaternary.
Resumo:
The effects of changing ice and atmospheric conditions on the upwelling of deep nutrient-laden waters and biological productivity in the coastal Beaufort Sea were quantified using a unique combination of in situ and remote-sensing approaches. Repeated instances of ice ablation and upwelling during fall 2007 and summer 2008 multiplied the production of ice algae, phytoplankton, zooplankton and benthos by 2 to 6 fold. Strong wind forcing failed to induce upward shifts in the biological productivity of stratified waters off the shelf.
Resumo:
A pronounced deficit of nitrogen (N) in the oxygen minimum zone (OMZ) of the Arabian Sea suggests the occurrence of heavy N-loss that is commonly attributed to pelagic processes. However, the OMZ water is in direct contact with sediments on three sides of the basin. Contribution from benthic N-loss to the total N-loss in the Arabian Sea remains largely unassessed. In October 2007, we sampled the water column and surface sediments along a transect cross-cutting the Arabian Sea OMZ at the Pakistan continental margin, covering a range of station depths from 360 to 1430 m. Benthic denitrification and anammox rates were determined by using 15N-stable isotope pairing experiments. Intact core incubations showed declining rates of total benthic N-loss with water depth from 0.55 to 0.18 mmol N m**-2 day**-1. While denitrification rates measured in slurry incubations decreased from 2.73 to 1.46 mmol N m**-2 day**-1 with water depth, anammox rates increased from 0.21 to 0.89 mmol N m**-2 day**-1. Hence, the contribution from anammox to total benthic N-loss increased from 7% at 360 m to 40% at 1430 m. This trend is further supported by the quantification of cd1-containing nitrite reductase (nirS), the biomarker functional gene encoding for cytochrome cd1-Nir of microorganisms involved in both N-loss processes. Anammox-like nirS genes within the sediments increased in proportion to total nirS gene copies with water depth. Moreover, phylogenetic analyses of NirS revealed different communities of both denitrifying and anammox bacteria between shallow and deep stations. Together, rate measurement and nirS analyses showed that anammox, determined for the first time in the Arabian Sea sediments, is an important benthic N-loss process at the continental margin off Pakistan, especially in the sediments at deeper water depths. Extrapolation from the measured benthic N-loss to all shelf sediments within the basin suggests that benthic N-loss may be responsible for about half of the overall N-loss in the Arabian Sea.
Resumo:
In 1986 participants of the Benthos Ecology Working Group of ICES conducted a synoptic mapping of the infauna of the southern and central North Sea. Together with a mapping of the infauna of the northern North Sea by Eleftheriou and Basford (1989, doi:10.1017/S0025315400049158) this provides the database for the description of the benthic infauna of the whole North Sea in this paper. Division of the infauna into assemblages by TWINSPAN analysis separated northern assemblages from southern assemblages along the 70 m depth contour. Assemblages were further separated by the 30, 50 m and 100 m depth contour as well as by the sediment type. In addition to widely distributed species, cold water species do not occur further south than the northern edge of the Dogger Bank, which corresponds to the 50 m depth contour. Warm water species were not found north of the 100 m depth contour. Some species occur on all types of sediment but most are restricted to a special sediment and therefore these species are limited in their distribution. The factors structuring species distributions and assemblages seem to be temperature, the influence of different water masses, e.g. Atlantic water, the type of sediment and the food supply to the benthos.
Resumo:
Taxonomic composition and structure of assemblages of the present-day benthic Foraminifera in the Kara Sea has been studied on the base of 37 samples of surface sediments. Three assemblages have been distinguished by composition of dominant species. The assemblage Cribrostomoides subglobosus-Tritaxis nana with prevalence of agglutinating forms, typical for abyssal areas of the World Ocean, occurs in brown oozes in the deep western part of the sea at depths 70-375 m under conditions of considerable bottom stratification. The assemblage Elphidium clavatum-Cassidulina reniforme consists predominantly of species with calcareous shells and is characterized by a wide range of species; this assemblage occurs in the eastern part of the sea at depths 30-90 m in a well-aerated area. Species typical for sublittoral areas of polar regions are dominant. The assemblage Elphidium clavatum-Haynesina orbiculare occupies the littoral estuarine part of the sea. This assemblage is poor in species and not abundant, and it occurs under influence of freshened water masses undersaturated with dissolved carbonaceous matter.
Resumo:
Foraminiferal assemblages were studied in northern Barents Sea core ASV 880 along with oxygen and carbon isotope measurements in planktonic (N. pachyderma sin.) and benthic (E. clavatum) species. AMS C-14 measurements performed on molluscs Yoldiella spp. show that this core provides a detailed and undisturbed record of Holocene climatic changes over the last 10000 calendar years. Surface and deep waters were very cold (<0°C) at the beginning of the Holocene. C. reniforme dominated the highly diverse benthic foraminiferal assemblage. From 10 to 7.8 cal. ka BP, a warming trend culminated in a temperature optimum, which developed between 7.8 and 6.8 cal. ka BP. During this optimum, the input of Atlantic water to the Barents Sea reached its maximum. The Atlantic water mass invaded the whole Franz Victoria Trough and was present from subsurface to the bottom. No bottom water, which would form through rejection of brine during winter, was present at the core depth (388 m). The water stratification was therefore greatly reduced as compared to the present. An increase in percentage of I. helenae/norcrossi points to long seasonal ice-free conditions. The temperature optimum ended rather abruptly, with the return of cold polar waters into the trough within a few centuries. This was accompanied by a dramatic reduction of the abundance of C. reniforme. During the upper Holocene, the more opportunistic species E. clavatum became progressively dominant and the water column was more stratified. Deep water in Franz Victoria Trough contained a significant amount of cold Barents Sea bottom water as it does today, while subsurface water warmed progressively until about 3.7 cal. ka BP and reached temperatures similar to those of today. These long-term climatic changes were cut by several cold events of short duration, in particular one in the middle of the temperature optimum and another, which coincides most probably with the 8.2 ka BP cold event. Both long- and short-term climatic changes in the Barents Sea are associated with changes in the flow of Atlantic waters and the oceanic conveyor belt.
Resumo:
We determined the stable oxygen and carbon isotopic composition of live (Rose Bengal stained) tests belonging to different size classes of two benthic foraminiferal species from the Pakistan continental margin. Samples were taken at 2 sites, with water depth of about 135 and 275 m, corresponding to the upper boundary and upper part of the core region of the oxygen minimum zone (OMZ). For Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata, delta13C and delta18O values increased significantly with increasing test size. In the case of U. ex gr. U. semiornata, delta13C increased linearly by about 0.105 per mil for each 100-µm increment in test size, whereas delta18O increased by 0.02 to 0.06 per mil per 100 µm increment. For B. aff. B. dilatata the relationship between test size and stable isotopic composition is better described by logarithmic equations. A strong positive linear correlation is observed between delta18O and delta13C values of both taxa, with a constant ratio of delta18O and delta13C values close to 2:1. This suggests that the strong ontogenetic effect is mainly caused by kinetic isotope fractionation during CO2 uptake. Our data underline the necessity to base longer delta18O and delta13C isotope records derived from benthic foraminifera on size windows of 100 µm or less. This is already common practice in down-core isotopic studies of planktonic foraminifera.
Resumo:
Biogeochemical behavior of a group of heavy metals and metalloids in water (including their dissolved and suspended particulate forms), bottom sediments, and zoobenthos was studied in the Ob River estuary (Obskaya Guba) - Kara Sea section on the basis of data obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September-October 2007. Changes in ratios of dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and As were shown, as well as growth of adsorbed fractions of the elements in near-bottom suspended matter under mixing of riverine and marine waters. Features of chemical element accumulation in typical benthic organisms of the Obskaya Guba and the Kara Sea were revealed, and their concentrating factors were calculated based on specific conditions of the environment. It was shown that shells of bivalves possessing higher biomass compared to other groups of organisms in the Obskaya Guba play an important role in deposition of heavy metals. In the Obskaya Guba mollusks accumulate Cd and Pb at the background level, whereas Cu and Zn contents appear to be higher than the background level.
Resumo:
Based on benthic foraminiferal delta18O from ODP Site 1143, a 5-Myr astronomical timescale for the West Pacific Plio-Pleistocene was established using an automatic orbital tuning method. The tuned Brunhes/Matuyama paleomagnetic polarity reversal age agrees well with the previously published age of 0.78 Ma. The tuned ages for several planktonic foraminifer bio-events also agree well with published dates, and new ages for some other bio-events in the South China Sea were also estimated. The benthic delta18O from Site 1143 is highly coherent with the Earth's orbit (ETP) both at the obliquity and precession bands for the last 5 Myr, and at the eccentricity band for the last 2 Myr. In general, the 41-kyr cycle was dominant through the Plio-Pleistocene although the 23-kyr cycle was also very strong. The 100-kyr cycle became dominant only during the last 1 Myr. A comparison of the benthic delta18O between the Atlantic (ODP 659) and the East and West Pacific (846 and 1143) reveals that the Atlantic-Pacific benthic oxygen isotope difference ratio (Delta delta18OAtl-Pac) displays an increasing trend in three time intervals: 3.6-2.7 Ma, 2.7-2.1 Ma and 1.5-0.25 Ma. Each of the intervals begins with a rapid negative shift in Delta delta18OAtl-Pac, followed by a long period with an increasing trend, corresponding to the growth of the Northern Hemisphere ice sheet. This means that all three intervals of ice sheet growth in the Northern Hemisphere were accompanied at the beginning by a rapid relative warming of deep water in the Atlantic as compared to that of the Pacific, followed by its gradual relative cooling. This general trend, superimposed on the frequent fluctuations with glacial cycles, should yield insights into the processes leading to the boreal glaciation. Cross-spectral analyses of the Delta delta18OAtl-Pac with the Earth's orbit suggests that after the initiation of Northern Hemisphere glaciation at about 2.5 Ma, obliquity rather than precession had become the dominant force controlling the vertical structure or thermohaline circulation in the paleo-ocean.
Resumo:
Trigger weight (TWC) and piston (PC) cores obtained from surveys of the three sites drilled during Ocean Drilling Program (ODP) Leg 105 were studied in detail for benthic foraminiferal assemblages, total carbonate (all sites), planktonic foraminiferal abundances (Sites 645 and 647), and stable isotopes (Sites 646 and 647). These high-resolution data provide the link between modern environmental conditions represented by the sediment in the TWC and the uppermost cores of the ODP holes. This link provides essential control data for interpretating late Pleistocene paleoceanographic records from these core holes. At Site 645 in Baffin Bay, local correlation is difficult because the area is dominated by ice-rafted deposits and by debris flows and/or turbidite sedimentation. At the two Labrador Sea sites (646 and 647), the survey cores and uppermost ODP cores can be correlated. High-resolution data from the site survey cores also provide biostratigraphic data that refine the interpretations compiled from core-catcher samples at each ODP site.
Resumo:
In this study isopod species of the Ross Sea were investigated. Literature until May 2008 was checked to provide an overview of all known and described species in the Ross Sea. This species checklist was then enlarged through material of the 19th Italica expedition in 2004. During this expedition for the first time a small mesh net (500 µm) was used. Nine thousand four hundred and eighty one isopod specimens were collected during this expedition. Through this material the number of isopod species in the Ross Sea increased from 42 to 117 species, which belong to 20 families and 49 genera. Fifty-six percentage of the isopods species collected during the Italica expedition are new to science. The zoogeography of the 117 species was investigated. A non-transformed binary presence-absence data matrix was constructed using the Bray-Curtis coefficient. The results were displayed in a cluster analysis and by nonmetric multidimensional scaling (MDS). This paper gives a first insight into the occurrence and distribution of the isopod species of the Ross Sea.
Resumo:
Benthic oxygen and nitrogen fluxes were quantified within the years 2012 to 2014 at different time series sites in the southern North Sea with the benthic lander NuSObs (Nutrient and Suspension Observatory). In situ incubations of sediments, in situ bromide tracer studies, sampling of macrofauna and pore water investigations revealed considerable seasonal and spatial variations of oxygen and nitrogen fluxes. Seasonal and spatial variations of oxygen fluxes were observed between two different time series sites, covering different sediment types and/or different benthic macrofaunal communities. On a sediment type with a high content of fine grained particles (<63 µm) oxygen fluxes of -15.5 to -25.1 mmol/m**2/d (June 2012), -2.0 to -8.2 mmol/m**2/d (March 2013), -16.8 to -21.5 mmol/m**2/d (November 2013) and -6.1 mmol/m**2/d (March 2014) were measured. At the same site a highly diverse community of small species of benthic macrofauna was observed. On a sediment type with a low content of fine grained particles (<63 µm) high oxygen fluxes (-33.2 mmol/m**2/d August 2012; -47.2 to -55.1 mmol/m**2/d November 2013; -16.6 mmol/m**2/d March 2014) were observed. On this sediment type a less diverse benthic macrofaunal community, which was dominated by the large bodied suspension feeder Ensis directus, was observed. Average annual rain rates of organic carbon and organic nitrogen to the seafloor of 7.44 mol C/m**2/y and 1.34 mol N/m**2/y were estimated. On average 79% of the organic bound carbon and 95% of the organic bound nitrogen reaching the seafloor are recycled at the sediment-water interface.