503 resultados para Removal of organic matter
Resumo:
The isotopic characteristics of CH4 (d13C values range from -101.3 per mil to -61.1 per mil PDB, and dD values range from -256 per mil to -136 per mil SMOW) collected during Ocean Drilling Program (ODP) Leg 164 indicate that the CH4 was produced by microbial CO2 reduction and that there is not a significant contribution of thermogenic CH4 to the sampled sediment gas from the Blake Ridge. The isotopic values of CO2 (d13C range -20.6 per mil to +1.24 per mil PDB) and dissolved inorganic carbon (DIC; d13C range -37.7 per mil to +10.8 per mil PDB) have parallel profiles with depth, but with an offset of 12.5 per mil. Distinct downhole variations in the carbon isotopic composition of CH4 and CO2 cannot be explained by closed-system fractionation where the CO2 is solely derived from the locally available sedimentary organic matter (d13C -2.0 per mil ± 1.4 per mil PDB) and the CH4 is derived from CO2 reduction. The observed isotopic profiles reflect the combined effects of upwards gas migration and decreased microbial activity with depth.
Resumo:
The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (d13C TOC = -26 to -22 per mil) and long-chain n-alkanes (C27, C29 and C31, d13C = -34 to -29 per mil) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the d15N TN values of the bulk sediment (+4 to +8 per mil) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The d13C values of archaeal biomarker pentamethylicosane (PMI) (-46.4 per mil) and bacterial-sourced hopenes, diploptene and hop-21-ene (-40.9 to -34.7 per mil) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.
Resumo:
On the basis of analysis of satellite and field data collected in Russian Arctic Seas maps of distribution of primary production for different months of the vegetation period were compiled. These maps were used to estimate annual primary production of organic carbon: 55 million tons in the Barents Sea; about 20 million tons in the Kara Sea; 10-15 million tons in the Laptev Sea and in the East Siberian Sea, 42 million tons in the Chukchi Sea. In the central and eastern parts of the Barents Sea during the vegetation period values of primary production decreased by factor >5 (from >500 to <100 mg C/m**2/day). By reviewing results of studies with sediment traps vertical fluxes of organic carbon in different regions of the Arctic Basin were estimated. Significant temporal variability of Corg fluxes with maxima during phytoplankton blooms (by 830 mg C/m**2/day) was noted. Typical summer fluxes of Corg are 10-40 mg C/m**2/day in the southern Barents Sea, 1-10 mg C/m**2/day in the northern Barents Sea and in the Kara Sea, and up to 370 mg C/m**2/day in the zone of marginal filters of the Ob and Yenisey rivers.
Resumo:
Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 * 10**8 cells/g equivalent to 8.7 and 38.7 µgC/g) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.
Resumo:
Sediment samples and hydrographic conditions were studied at 28 stations around Iceland. At these sites, Conductivity-Temperature-Depth (CTD) casts were conducted to collect hydrographic data and multicorer casts were conductd to collect data on sediment characteristics including grain size distribution, carbon and nitrogen concentration, and chloroplastic pigment concentration. A total of 14 environmental predictors were used to model sediment characteristics around Iceland on regional geographic space. For these, two approaches were used: Multivariate Adaptation Regression Splines (MARS) and randomForest regression models. RandomForest outperformed MARS in predicting grain size distribution. MARS models had a greater tendency to over- and underpredict sediment values in areas outside the environmental envelope defined by the training dataset. We provide first GIS layers on sediment characteristics around Iceland, that can be used as predictors in future models. Although models performed well, more samples, especially from the shelf areas, will be needed to improve the models in future.
Resumo:
Macroalgae, in particular kelps, produce a large amount of biomass in Kongsfjorden, which is to a great extent released into the water in an annual cycle. As an example, the brown alga Alaria esculenta loses its blade gradually, 3 ± 0.8 % of the blade area per day (August 2012), thereby adding to the pool of particulate organic matter (POM) in the fjord. Upon release small thallus pieces are "aging" in that they are prone to leaching and serving as substrate for microorganisms, thus turning into palatable food for suspension and bottom feeders. In order to define a macroalgal baseline for the Kongsfjorden food web, stable isotopes d14C and d15N were measured in individuals of A. esculenta, Saccharina latissima and Laminaria digitata directly sampled after collection and in artificially produced POM (aPOM) of A. esculenta that was allowed to age under experimental conditions. In aPOM from this species sampled in August 2012 the C/N ratios decreased between d1 and d8 of a 14-day culture period in parallel to the fading photosynthetic activity of the algal fragments as demonstrated by use of an Imaging-PAM. Microscopic observations of the aPOM in August 2012 and 2013 revealed the frequent occurrence of small brown algal endo- and epiphytes. First feeding experiments with Mysis oculata (Mysids) and Hiatella arctica (Bivalves) showed that these species can ingest macroalgal POM. The importance of kelp-derived POM for the food web is subject of the current research.
Resumo:
Alkali phosphatase activity and hydrochemical structure of waters in the Barents and Norwegian seas were investigated. In a sea with the seasonal bioproduction cycle alkali phosphatase activity is also seasonal, rising with trophic level of waters. At the end of hydrological and biological winter activity is practically zero. Alkali phosphatase activity is especially important in summer, when plankton has consumed winter supply of phosphate in the euphotic layer and nutrient limitation of primary production begins. In summer production and destruction cycle, apparent time for recycling of phosphorus by phosphatase in suspended matter in the euphotic layer of the Barents Sea and Norwegian Sea averages from 7 to 30 hours.