335 resultados para RARE EARTH ELEMENTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-rich sediments were found in the West Philippine Basin at DSDP sites 291 (located about 500 km SW of the Philippine Ridge or Central Basin Fault) and 294/295 (located about 580 km NE of the Philippine Ridge). In both cases the metalliferous deposits constitute a layer, probably Eocene in age, resting directly above the basaltic basement at the bottom of the sediment column. The chemistry of the major (including Fe and Mn) and trace elements (including trace metals, rare earth elements, U and Th) suggest a strong similarity of these deposits to metalliferous deposits produced by hydrothermal activity at oceanic spreading centers. Well-crystallized hematite is a major component of the metal-rich deposits at site 294/295. We infer that the Philippine Sea deposits were formed at some spreading center by hydrothermal processes of metallogenesis, similar to processes occurring at oceanic spreading centers. A locus for their formation might have been the Philippine Ridge (Central Basin Fault), probably an extinct spreading center. We conclude that metallogenesis of the type occurring at oceanic spreading centers can take place also in marginal basins. This has implications for the origin of metal deposits found in some ophiolite complexes, such as those in Luzon (Philippines), which may represent fragments of former marginal basins rather than of oceanic lithosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Okinawa Trough (OT) in the East Asian continental margin is characterized by thick terrigenous sediment and ubiquitous volcanic-hydrothermal activities. In this study, the clays collected during IODP Expedition 331 to the middle OT (Iheya North Knoll) were analyzed for mineralogical and geochemical compositions. By comparing with the clays from the East China Sea shelf and surrounding rivers, we examine different clay origins. The hydrothermal field in the mid-OT is dominated by Mg-rich chlorite, while the recharge zone has clay mineral assemblages similar to the shelf and rivers, showing high content of illite, subordinate chlorite and kaolinite and scarce smectite. Compared to the terrigenous clays, the hydrothermal clays in the OT have high concentrations of Mg, Mn and Zr but low Fe, Na, K, Ca, Ba, Sr, P, Sc and Ti, while the hydrothermal clays in the mid-ocean ridge are relatively enriched in Fe and V and depleted in Al, Mg, Zr, Sc and Ti. Different fractionation patterns of rare earth elements also register in the terrigenous and hydrothermal clays, diagnostic of variable clay origins. We infer that the OT hydrothermal clay was primarily formed by the chemical alteration of detrital sediments subject to the hydrothermal fluids. The remarkably different compositions of hydrothermal clays between the sediment-rich back arc basin like OT and the sediment-starved ocean ridge suggest different physical and chemical processes of hydrothermal fluids and fluid-rock/sediment reactions under various geologic settings.