956 resultados para Oxygen Isotope Stratigraphy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compiled the first stratigraphically continuous high-resolution benthic foraminiferal stable isotope record for the Paleocene from a single site utilizing cores recovered at Pacific ODP Site 1209. The long-term trend in the benthic isotope record suggests a close coupling of volcanic CO2 input and deep sea warming. Over the short-term the record is characterized by slow excursions with a pronounced periodic beat related to the short (100-kyr) and long (405-kyr) eccentricity cycle. The phase relationship between the benthic isotope record and eccentricity is similar to patterns documented for the Oligocene and Miocene confirming the role of orbital forcing as the pace maker for paleoclimatic variability on Milankovitch time scales. In addition, the record documents an unusual transient warming of 2°C coeval with a 0.6 per mil carbon isotope excursion and a decrease in carbonate content at 61.75 Ma. This event, which bears some resemblance to Eocene hyperthermals, marks the onset of a long-term decline in d13C. The timing indicates it might be related to the initiation of volcanism along Greenland margin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generated benthic isotope records from Ocean Drilling Program (ODP) site 981 on the Feni drift (2173 m water depth) and from ODP site 983 on the Gardar drift (1983 m water depth) to examine the interaction between North Atlantic Deep Water (NADW) and Glacial North Atlantic Intermediate Water (GNAIW) formation from 2.0 to 1.4 Ma. We find NADW at both sites during interglacial periods, and a mix of NADW and Southern Ocean water at the Feini drift during most glacial periods. Prior to 1.7 Ma we find no evidence ofr GNAIW at the Gardar drift site. Instead, glacial Gardar drift delta13C values are as low or lower than values for all other sites in the North Atlantic and reflect continued glacial overflow from the Nordic seas. After 1.7 Ma Gardar drift delta13C values increase and suggest that there was GNAIW at the Gardar drift site during some glacial intervals. Overall, we find that NADW and GNAIW production changed around 1.7 Ma in concert with changes in sea surface temperature and salinity and in the Earth's obliquity cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanographic changes in the western equatorial Pacific during the past 6 Ma are inferred from oxygen isotopic analyses of planktic and benthic foraminifera from Ontong Java Plateau (DSDP Site 586). The taxa are Globigerinoides sacculifer, Pulleniatina, Cibicidoides wuellerstorfi, and Oridorsalis umbonatus. Cooling and ice buildup are indicated by an 18O enrichment of 0.3 per mil in the planktic species near 3.4 Ma. This shift apparently is compensated in the benthic data by a warming of the deep waters by between 1° and 2° C. We suggest that the dominant source of upper deep water supply to the Pacific changed from Antarctic to North Atlantic at that time, the North Atlantic-derived water being warmer. Near 2.8 Ma (approximately) the planktic foraminifera again record an enrichment in 18O (Delta delta18O=0.25 per mil). We suggest ice buildup in the northern hemisphere as the cause, because of subsequent sharp increase in fluctuations of the delta18O signal, that is, instability. The enrichment is magnified in the benthic foraminifera (Delta delta18O = 0.5 per mil) by a cooling of the deep water by 1.5° at the time, presumably signalling a glacial-type reduction of North Atlantic Deep Water (NADW) production. Episodic divergence between the signals of G. sacculifer and Pulleniatina in the Pleistocene apparently reflects periods of increased upwelling in the western equatorial Pacific. The amplitude of ice volume fluctuations cannot be reconstructed from delta18O data alone, unless there are constraints on temperature variations. The increase in amplitude of fluctuation of the benthic and planktic signals during the Pleistocene may be attributed either to an increase in maximum ice volume, or to an increase in the fractionation of continental ice, or a combination of both causes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured oxygen isotopes and Mg/Ca ratios in the surface-dwelling planktonic foraminifer Globigerinoides ruber (white s.s.) and the thermocline dweller Pulleniatina obliquiloculata to investigate upper ocean spatial variability in the Indo-Pacific Warm Pool (IPWP). We focused on three critical time intervals: the Last Glacial Maximum (LGM; 18-21.5 ka), the early Holocene (8-9 ka), and the late Holocene (0-2 ka). Our records from 24 stations in the South China Sea, Timor Sea, Indonesian seas, and western Pacific indicate overall dry and cool conditions in the IPWP during the LGM with a low thermal gradient between surface and thermocline waters. During the early Holocene, sea surface temperatures increased by ~3°C over the entire region, indicating intensification of the IPWP. However, in the eastern Indian Ocean (Timor Sea), the thermocline gradually shoaled from the LGM to early Holocene, reflecting intensification of the subsurface Indonesian Throughflow (ITF). Increased surface salinity in the South China Sea during the Holocene appears related to northward displacement of the monsoonal rain belt over the Asian continent together with enhanced influx of saltier Pacific surface water through the Luzon Strait and freshwater export through the Java Sea. Opening of the freshwater portal through the Java Sea in the early Holocene led to a change in the vertical structure of the ITF from surface- to thermocline-dominated flow and to substantial freshening of Timor Sea thermocline waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen and carbon isotopic composition has been measured for numerous Paleogene planktonic foraminifer species from Maud Rise, Weddell Sea (ODP Sites 689 and 690), the first such results from the Antarctic. The results provide information about large-scale changes in the evolution of temperatures, seasonally, and structure of the upper water column prior to the development of a significant Antarctic cryosphere. The early Paleocene was marked by cooler surface-water conditions compared to the Cretaceous and possibly a less well developed thermocline. The late Paleocene and early Eocene saw the expansion of the thermocline as Antarctic surface waters became warm-temperate to subtropical. The late Paleocene to early Eocene thermal maximum was punctuated by two brief excursions during which time the entire Antarctic water column warmed and the meridional temperature gradient was reduced. The first of these excursions occurred at the Paleocene/Eocene boundary, in association with a major extinction in deep sea benthic foraminifers. The second excursion occurred within the early Eocene at ~54.0 Ma. These excursions are of global importance and represent the warmest intervals of the entire Cenozoic. The excursions were associated with fundamental changes in deep-water circulation and global heat transport. The thermal maximum of the early Eocene ended with the initiation of a long-term cooling trend at 52.0 Ma. This cooling trend was associated with reduced seasonality, and diminished structure and/or duration of the seasonal thermocline. The cooling trend was punctuated by three major cooling steps at 43.0, 40.0, and -36.0 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We established a composite oxygen- and carbon-isotope stratigraphy for the Pliocene in the central South Atlantic. Monospecific samples of benthic and planktonic foraminifers from pelagic sediments from DSDP Sites 519, 521, 522, and 523 were analyzed isotopically. The resulting benthic oxygen-isotope stratigraphy allowed three paleoclimatic periods in the Pliocene to be distinguished. During the early Pliocene (5.2-3.3 Ma), low-amplitude climatic changes prevailed in a world that was less glaciated than during the Pleistocene. A net increase in global ice volume is documented in a 0.5 permil positive shift in the average 18O composition of the benthic foraminifers at 3.2 Ma. The middle Pliocene (3.3-2.5 Ma) is not only characterized by a more widespread glaciation of the Southern and Northern hemispheres but also by more drastic isotopic differences between glacial and interglacial times. A minor shift in the average 18O composition of the benthic foraminifers marks the beginning of the late Pliocene-early Pleistocene climatic period (2.5-1.1 Ma). Alternating cold and warm climate is documented in both the oxygen-isotope record and in the pelagic sediments. During cold periods, sediments with a lower CaCO3 content indicate more corrosive bottom-water conditions. More negative 13C signals in the benthic foraminifers from these sediments suggest that the Antarctic Bottom Water current was intensified in glacial times. The oxygen-isotope composition of the measured planktonic foraminifers suggests that the surface water in this part of the South Atlantic remained relatively warm during the growth of the Pliocene glaciers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen-isotope ratio measurements are presented for the planktonic species Globigerinoides ruber collected from shallow-water, upper-slope sediments from Holes 820A and 820B in 280 m of water, on the seaward edge of the Great Barrier Reef. Correlation of the Site 820 isotope curve with deep-sea reference curves of the Pacific Ocean (Core V28-238, Hole 677A, Hole 607A) permits the definition of isotope stages 1 to 19 in the top 145 m of Holes 820A and 820B. However, paleontological data indicate that stages 4 and 7 might be missing and that two hiatuses occur at a depth of 8.05 to 12.1 and 34.55 to 35.8 mbsf. Using deep-sea Hole 677A as a reference for ice-volume variations, we determine the difference in isotopic signature between it and Site 820. We propose that this difference is a regional signal representing a progressive 4°C increase in surface-water temperature at Site 820. The proposed temperature change was initiated at about 400 k.y. and corresponds to a change from high-to-low frequency variations in Pleistocene isotope signals. We postulate that these changes may have catalyzed the growth of the Great Barrier Reef. The shift also coincides with changes in seismic character and some physical and chemical sediment characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between 1999 and 2001, a 724 m long ice core was drilled on Akademii Nauk, the largest glacier on Severnaya Zemlya, Russian Arctic. The drilling site is located near the summit. The core is characterized by high melt-layer content. The melt layers are caused by melting and even by rain during the summer. We present high-resolution data of density, electrical conductivity (dielectrical profiling), stable water isotopes and melt-layer content for the upper 136 m (120 m w.e.) of the ice core. The dating by isotopic cycles and electrical conductivity peak identification suggests that this core section covers approximately the past 275 years. Singularities of volcanogenic and anthropogenic origin provide well-defined additional time markers. Long-term temperatures inferred from 12 year running mean averages of d18O reach their lowest level in the entire record around 1790. Thereafter the d18O values indicate a continuously increasing mean temperature on the Akademii Nauk ice cap until 1935, interrupted only by minor cooling episodes. The 20th century is found to be the warmest period in this record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Quaternary history of metastable CaCO3 input and preservation within Antarctic Intermediate Water (AAIW) was examined by studying sediments from ODP Holes 818B (745 mbsl) and 817A (1015 mbsl) drilled in the Townsville Trough on the southern slope of the Queensland Plateau. These sites lie within the core of modern AAIW, and near the aragonite saturation depth (~1000 m). Thus, they are well positioned to monitor chemical changes that may have occurred within this watermass during the past 1.6 m.y. The percent of fine aragonite content, percent of fine magnesian calcite content, and percent of whole pteropods (>355 µm) were used to separate the fine aragonite input signal from the CaCO3 preservation signal. Stable d18O and d13C isotopic ratios were determined for the planktonic foraminifer Globigerinoides sacculifer and, in Hole 818B, for the benthic foraminifer Cibicidoides spp. to establish the oxygen isotope stratigraphy and to study the relationship between intermediate and shallow water d13C of Sum CO2 and the relationship between benthic foraminiferal d13C and CaCO3 preservation within intermediate waters of the Townsville Trough. Data were converted from depth to age using oxygen isotope stratigraphy, nannostratigraphy, and foraminiferal biostratigraphy. Several long hiatuses and the absence of magnetostratigraphy did not permit time series analysis. The principal results of the CaCO3 preservation study include the following (1) a general increase in CaCO3 preservation between 0.9 and 1.6 Ma; (2) a CaCO3 dissolution maximum near 0.9 Ma, primarily expressed in the Hole 818B fine aragonite record; (3) an abrupt and permanent increase of fine aragonite content between 0.86 and 0.875 Ma in both Holes 818B and 817A probably reflecting a dramatic increase of fine carbonate sediment production on the Queensland Plateau; (4) an improvement in CaCO3 preservation near 0.87 Ma, which accompanied the increase of sediment input, indicated by the first appearance of whole pteropods in the deeper Hole 817A and a "spike" in the percent whole pteropods in Hole 818B; (5) a period of strong CaCO3 dissolution during the mid-Brunhes Chron from 0.36 to 0.41 Ma; and (6) a complex CaCO3 preservation pattern between 0.36 Ma and the present characterized by a general increase in CaCO3 preservation through time with good preservation during interglacial stages and poor preservation during glacial stages. The long-term aragonite preservation histories for Holes 818B and 817A appear to be similar in general shape, although different in detail, to CaCO3 preservation records from the deep Indian and central equatorial Pacific oceans as well as from intermediate water sites in the Bahamas and the Maldives. All of these areas have experienced CaCO3 dissolution at about 0.9 Ma and during the mid-Brunhes Chron. However, the late Quaternary (0 to 0.36 Ma) glacial to interglacial preservation pattern in Holes 818B and 817A is out of phase with CaCO3 preservation records for sediments deposited in Pacific deep and bottom waters. The sharp increase in bank production and export from the Queensland Plateau and the coincident improvement of CaCO3 preservation between 0.86 and 0.875 Ma may have been synchronous with the initiation of the Great Barrier Reef and roughly coincides with an increase in carbonate accumulation on the Bahama banks, in the western North Atlantic Ocean, and on Mururoa atoll, in the central South Pacific Ocean. The development of these reef systems during the middle Quaternary may be related to the transition in the frequency and amplitude of global sea level change from 41 k.y. low amplitude cycles prior to 0.9 Ma to 100 k.y. high amplitude cycles after 0.73 Ma. Carbon isotopic analyses show that benthic foraminiferal d13C values (Cibicidoides spp.) have been heavier than planktonic foraminiferal d13C values (G. sacculifer) throughout most of the last 0.54 m.y., which may indicate that 13C-enriched intermediate water (AAIW) occupied the Townsville Trough during much of the late Quaternary. Furthermore, both planktonic and benthic foraminiferal d13C values are often observed to be heaviest during interglacial to glacial transitions, and lightest during glacial to interglacial transitions. We suggest that this pattern is the result of changes in the preformed d13C of Sum CO2 of AAIW and may reflect changes in nutrient utilization by primary producers in Antarctic surface waters, changes in the d13C of upwelled Circumpolar Deep Water, or changes in the extent and/or temperature of equilibration between surface water and atmospheric CO2 within the Antarctic Polar Frontal Zone (the source area for AAIW). Finally, the poor correlation between percent of whole pteropods (aragonite preservation) and d13C of Cibicidoides spp. may be the result of a decoupling of d13C from CO2 due to the numerous and complex variables that combine to produce the preformed d13C of AAIW.