885 resultados para Ocean bottom


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In near-shore Pacific bottom sediments to the east of Japan unusually high content of free H2S ocurs. H2S resulting from bacterial reduction of sulfates from interstitial waters has a number of derivatives; pyrite dominates among them. Contents of other derivatives of H2S: sulfide sulfur and organic sulfur do not exceed 0,01%, content of organic sulfur does not exceed 0.1%. Due to reduction content of sulfates can reduce to 0,03% S. Capacity of the process of sulfate reduction, estimated by sum of all reduced forms of S - derivatives of H2S, is a function of organic matter content in sediments. Ability of bottom sediments to accumulate free H2S depends on content of reactive forms of Fe. Spatial distribution of reduced forms of S in the studied sediments is considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geomorphology, geology, stratigraphy, lithology and geochemistry of bottom sediments in the South Ocean are under consideration. Regularities of distribution of iron-manganese nodules, features of occurrence of ore components in the nodules, nodule abundance in bottom sediments have been studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Study of phosphorus distribution in grain size fractions of eupelagic clays showed high (up to 3%) content of P in Fe-Mn micronodules that can contain up to 20-30% of total P. Mineral P associated with Fe in ocean sediments is an analog of manganese in ocean sedimentogenesis. Sharp decrease of P contents in ocean Fe-Mn nodules compared to ones from seas results from decrease of Fe contents and partial neutralization of Fe activity by Mn.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Radiocarbon datings are used to calculate mean sedimentation rates of metalliferous sediments in the southern arid zone of the Pacific Ocean adjoining the axis of the East Pacific rise (20°S). Owing to low sedimentation rates and intense mixing, only averaged figures could be obtained for ages less than 16 ky. Sedimentation rate varies from 0.3 to about 1 cm/1000 years in the surface layer and is several times higher in the time interval from 20 ky to 45 ky ago. Formulas for calculating mean sedimentation rates with allowance for benthic mixing are presented.