558 resultados para NORTH-ATLANTIC CLIMATE
Resumo:
Well-preserved diatoms are present in high sedimentation rate Pleistocene cores retrieved on Ocean Drilling Program (ODP) Legs 151, 152, 162 and IMAGES cruises of R/V Marion Dufresne from the North Atlantic. Investigation of the stratigraphic occurrence of diatom species shows that the youngest diatom event observed in the area is the last occurrence (LO) of Proboscia curvirostris (Jousé) Jordan and Priddle. P. curvirostris is a robust species that can easily be identified in the sediments, and therefore can be a practical biostratigraphic tool. We have mapped its areal distribution, and found that it stretches from 40°N to 80°N in the North Atlantic. Further, we have correlated the LO P. curvirostris to the oxygen isotope records of six cores to refine the age of this biostratigraphic event. The extinction of P. curvirostris is latitudinally diachronous through Marine Isotope Stages (MIS) 9 to 8 within the North Atlantic. This is closely related to the paleoceanography of the area. P. curvirostris first disappeared within interglacial MIS 9 (324 ka) from the northern areas that are most sensitive to climatic forcing, like the East Greenland current and the sea-ice margin. It survived in mid-North Atlantic until the conditions of the MIS 8 (glaciation) became too severe (260 ka). In the North Pacific at ODP Site 883 the LO P. curvirostris falls within MIS 8. The observed overlap in age between the North Atlantic and the North Pacific strongly suggests that the extinction of P. curvirostris is synchronous between these oceans.
Resumo:
We demonstrate size fluctuations of the calcareous nannofossil genus Reticulofenestra in Upper Pliocene sediments from the North Atlantic Ocean and clarify a characteristic evolutionary trend of this genus. Four bioevents, which are based on abrupt decreases in maximum size and on changes of morphologic features of Reticulofenestra specimens, are detected in the sediments. They are the disappearance of R. minutula var. A, the termination of Acme Zone II of R. minutula var. C, the disappearance of R. minutula var. B, and the termination of Acme Zone I of R. minutula var. C, in ascending order. These are nearly synchronous and traceable events.
Resumo:
Sediment samples and hydrographic conditions were studied at 28 stations around Iceland. At these sites, Conductivity-Temperature-Depth (CTD) casts were conducted to collect hydrographic data and multicorer casts were conductd to collect data on sediment characteristics including grain size distribution, carbon and nitrogen concentration, and chloroplastic pigment concentration. A total of 14 environmental predictors were used to model sediment characteristics around Iceland on regional geographic space. For these, two approaches were used: Multivariate Adaptation Regression Splines (MARS) and randomForest regression models. RandomForest outperformed MARS in predicting grain size distribution. MARS models had a greater tendency to over- and underpredict sediment values in areas outside the environmental envelope defined by the training dataset. We provide first GIS layers on sediment characteristics around Iceland, that can be used as predictors in future models. Although models performed well, more samples, especially from the shelf areas, will be needed to improve the models in future.
Resumo:
Benthic foraminiferal Cd/Ca from an intermediate depth, western South Atlantic core documents the history of southward penetration of North Atlantic Intermediate Water (NAIW). Cd seawater estimates (CdW) for the last glacial are consistent with the production of NAIW and its export into the South Atlantic. At ~14.5 ka concurrently with the onset of the Bølling-Allerød to Younger Dryas cooling, the NAIW contribution to the South Atlantic began to decrease, marking the transition from a glacial circulation pattern to a Younger Dryas circulation. High CdW in both the deep North Atlantic and the intermediate South Atlantic imply reduced export of deep and intermediate water during the Younger Dryas and a significant decrease in northward oceanic heat transport. A modern circulation was achieved at ~9 ka, concurrently with the establishment of Holocene warmth in the North Atlantic region, further supporting a close linkage between deepwater variability and North Atlantic climate.