602 resultados para Massenspektrometrie, CE-ICP-MS, Actiniden


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ~4 µm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m**2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m**2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m**2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of past changes in biological productivity in the Subarctic North Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have conducted high-pressure experiments on a natural oceanic gabbro composition (Gb108). Our aim was to test recent proposals that Sr-enrichment in rare primitive melt inclusions from Mauna Loa, Hawaii, may have resulted from melting of garnet pyroxenite formed in the magma source regions by reaction of peridotite with siliceous, Sr-enriched partial melts of eclogite of gabbroic composition. Gb108 is a natural, Sr-enriched olivine gabbro, which has a strong positive Sr anomaly superimposed on an overall depleted incompatible trace element pattern, reflecting its origin as a plagioclase-rich cumulate. At high pressures it crystallises as a coesite eclogite assemblage, with the solidus between 1,300 and 1,350°C at 3.5 GPa and 1,450 and 1,500°C at 4.5 GPa. Clinopyroxenes contain 4-9% Ca-eskolaite component, which varies systematically with pressure and temperature. Garnets are almandine and grossular-rich. Low degree partial melts are highly siliceous in composition, resembling dacites. Coesite is eliminated between 50 and 100°C above the solidus. The whole-rock Sr-enrichment is primarily hosted by clinopyroxene. This phase dominates the mode (>75 wt%) at all investigated PT conditions, and is the major contributor to partial melts of this eclogite composition. Hence the partial melts have trace element patterns sub-parallel to those of clinopyroxene with ~10* greater overall abundances and with strong positive Sr anomalies. Recent studies of primitive Hawaiian volcanics have suggested the incorporation into their source regions of eclogite, formerly gabbroic material recycled through the mantle at subduction zones. The models suggest that formerly gabbroic material, present as eclogite in the Hawaiian plume, partially melted earlier than surrounding peridotite (i.e. at higher pressure) because of the lower solidus temperature of eclogite compared with peridotite. This produced highly siliceous melts which reacted with surrounding peridotite producing hybrid pyroxene + garnet lithologies. The Sr-enriched nature of the formerly plagioclase-rich gabbro was present in the siliceous partial melts, as demonstrated by these experiments, and was transferred to the reactive pyroxenite. These in turn partially melted, producing Sr-enriched picritic liquids which mixed with normal picritic partial melts of peridotite before eruption. On rare occasions these mixed, relatively Sr-rich melts were trapped as melt inclusions in primitive olivine phenocrysts.Yaxley-Sobolev

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Leg 168 a transect was drilled across the eastern flank of the Juan de Fuca Ridge in an area where the volcanic basement is covered by sediments of variable thickness. Samples of basement volcanic rocks were recovered from nine locations along the transect, where the basement sediment interface is presently heated to temperatures varying from 15° to 64°C. Altered rocks with secondary calcium carbonate were common at four of the sites, where present-day temperatures range from 38° to 64°C. Fluid inclusions in aragonite suggest that the mineral precipitated from an aqueous fluid of seawater salinity at temperatures well below 100°C. The chemical compositions of secondary calcite and aragonite were determined with both an electron microprobe and a laser-ablation inductively coupled plasma-mass spectroscopy (LA-ICP-MS) microprobe. These two techniques yielded consistent analyses of the same minor elements (Mg and Sr) in the same specimens. The combined results show that secondary aragonites contain very little Mg, Mn, Fe, Co, Ni, Cu, Zn, Rb, La, Ce, Pb, or U, yet they contain significant Sr. In contrast, secondary calcites contain significant Mg, Mn, Fe, Ni, Cu, Zn, and Pb, yet very little Co, Rb, Sr, La, Ce, or U. Secondary calcium carbonates provide subseafloor reservoirs for some minor and trace elements. Replacement of aragonite by calcite should result in a release of Sr, Rb, and Zn to solution, and it provides a sink for Mg, Mn, Ni, Cu, Zn, and Pb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nd isotopes preserved in fossil fish teeth and ferromanganese crusts have become a common tool for tracking variations in water mass composition and circulation through time. Studies of Nd isotopes extracted from Pleistocene to Holocene bulk sediments using hydroxylamine hydrochloride (HH) solution yield high resolution records of Nd isotopes that can be interpreted in terms of deep water circulation, but concerns about diagenesis and potential contamination of the seawater signal limit application of this technique to geologically young samples. In this study we demonstrate that Nd extracted from the > 63 µm, decarbonated fraction of older Ocean Drilling Program (ODP) sediments using a 0.02 M HH solution produces Nd isotopic ratios that are within error of values from cleaned fossil fish teeth collected from the same samples, indicating that the HH-extractions are robust recorders of deep sea Nd isotopes. This excellent correlation was achieved for 94 paired fish teeth and HH-extraction samples ranging in age from the Miocene to Cretaceous, distributed throughout the north, tropical and south Atlantic, and composed of a range of lithologies including carbonate-rich oozes/chalks and black shales. The strong Nd signal recovered from Cretaceous anoxic black shale sequences is unlikely to be associated with ferromanganese oxide coatings, but may be derived from abundant phosphatic fish teeth and debris or organic matter in these samples. In contrast to the deep water Nd isotopic signal, Sr isotopes from HH-extractions are often offset from seawater values, suggesting that evaluation of Sr isotopes is a conservative test for the integrity of Nd isotopes in the HH fraction. However, rare earth elements (REE) from the HH-extractions and fish teeth produce distinctive middle REE bulge patterns that may prove useful for evaluating whether the Nd isotopic signal represents uncontaminated seawater. Alternatively, a few paired HH-extraction and cleaned fish teeth samples from each site of interest can be used to verify the seawater composition of the HH-extractions. The similarity between isotopic values for the HH-extraction and fish teeth illustrates that the extensive cleaning protocol applied to fish teeth samples is not necessary in typical, carbonate-rich, deep sea sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, I present trace element data for basement samples at Ocean Drilling Program (ODP) Site 1256. The samples analyzed represent a subset of the group ("pool") samples from ODP Leg 206, and these trace element data are part of a more comprehensive data suite for the same samples, with analyses of stable and radiogenic isotopes (e.g., Sr, Li, and O) in progress or recently completed that will be presented elsewhere. The trace element analyses were performed in the GeoAnalytical Lab at Washington State University. The following elements were analyzed: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ba, Th, Nb, Y, Hf, Ta, U, Pb, Rb, Cs, Sr, Sc, and Zr. Trace element data indicate that the igneous basement at Site 1256 is geochemically normal mid-ocean-ridge basalt. A massive ponded flow sampled in both Holes 1256C and 1256D is distinguished by higher abundances of rare earth elements (REE) and most of the other trace elements analyzed. One interval of highly altered basalt has significantly higher concentrations of Cs, Rb, and Ba and lower concentrations of Sr, Pb, Zr, Hf, Sc, and most REE than the samples of background alteration or halos. No correlation is obvious between trace element abundance and macroscopic type of alteration within the background alteration or halos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Legs 118 and 176, Ocean Drilling Program Hole 735B, located on Atlantis Bank on the Southwest Indian Ridge, was drilled to a total depth of 1508 meters below seafloor (mbsf) with nearly 87% recovery. The recovered core provides a unique section of oceanic Layer 3 produced at an ultraslow spreading ridge. Metamorphism and alteration are extensive in the section but decrease markedly downward. Both magmatic and hydrothermal veins are present in the core, and these were active conduits for melt and fluid in the crust. We have identified seven major types of veins in the core: felsic and plagioclase rich, plagioclase + amphibole, amphibole, diopside and diopside + plagioclase, smectite ± prehnite ± carbonate, zeolite ± prehnite ± carbonate, and carbonate. A few epidote and chlorite veins are also present but are volumetrically insignificant. Amphibole veins are most abundant in the upper 50 m of the core and disappear entirely below 520 mbsf. Felsic and plagioclase ± amphibole ± diopside veins dominate between ~50 and 800 mbsf, and low-temperature smectite, zeolite, and prehnite veins are present in the lower 500 m of the core. Carbonate veinlets are randomly present throughout the core but are most abundant in the lower portions. The amphibole veins are closely associated with zones of intense crystal plastic deformation formed at the brittle/ductile boundary at temperatures above 700°C. The felsic and plagioclase-rich veins were formed originally by late magmatic fluids at temperatures above 800°C, but nearly all of these have been overprinted by intense hydrothermal alteration at temperatures between 300° and 600°C. The zeolite, prehnite, and smectite veins formed at temperatures <100°C. The chemistry of the felsic veins closely reflects their dominant minerals, chiefly plagioclase and amphibole. The plagioclase is highly zoned with cores of calcic andesine and rims of sodic oligoclase or albite. In the felsic veins the amphibole ranges from magnesio-hornblende to actinolite or ferro-actinolite, whereas in the monomineralic amphibole veins it is largely edenite and magnesio-hornblende. Diopside has a very narrow range of composition but does exhibit some zoning in Fe and Mg. The felsic and plagioclase-rich veins were originally intruded during brittle fracture at the ridge crest. The monomineralic amphibole veins also formed near the ridge axis during detachment faulting at a time of low magmatic activity. The overprinting of the igneous veins and the formation of the hydrothermal veins occurred as the crustal section migrated across the floor of the rift valley over a period of ~500,000 yr. The late-stage, low-temperature veins were deposited as the section migrated out of the rift valley and into the transverse ridge along the margin of the fracture zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Explosive ocean island volcanism in the Greenland-Iceland-Norwegian Sea (GIN Sea) is indicated by marine tephra layers at 10-300 ka. Peaks of explosive volcanism occurred in oxygen isotope stages 8, 7, 5 and 1. The depositional age of the tephra was estimated using the oxygen isotope stratigraphy and dating of marine records. Geochemical analyses of the tephra layers show that all originate from Iceland. Here we report the characteristics of tephra from these major Icelandic events in 30 deep-sea cores from the GIN Sea. Our findings provide constraints on the distribution of tephra from the eruption source. For the Vedde Ash (oxygen isotope stage 1) we estimate a minimum fallout area of 2*10**5 km**2, stretching from central Greenland in the west and southern Sweden in the east, to 71°N in the GIN Sea. The magnitude of the eruption and the regional wind conditions controlled the extent and concentrations of these ash fallout events. Oceanic circulation and differential settling may have affected the distribution and final deposition of ash particles such as bubble wall shards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This datafile presents chemical and physical as well as age dating information from the Store Mosse peat bog in southern Sweden. This record dates back to 8900 cal yr BP. The aim of the research was to reconstruct mineral dust deposition over time. As such we have only presented the lithogenic element data (Al, Ga, Rb, Sc, Ti, Y, Zr, Th and the REE) as the sample preparation method was tailored to these. This data is supported by parameters describing the deposit including bulk density, humification, ash content and net peat accumulation rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes of authigenic manganese ore formation in sediments of the North Equatorial Pacific are considered on the basis of a study of the surface layer (<2 mm) of a ferromanganese nodule and four micronodule size fractions from associated surface sediment (0-7 cm). Inhomogeneity of nodule composition is shown. Mn/Fe ratio is maximal in samples from lateral sectors of the nodule at the water-sediment interface. Compositional differences of nodules are related to preferential accumulation of trace elements in iron oxyhydroxides (P, Sr, Pb, U, Bi, Th, Y, and REE), manganese hydroxides (Co, Ni, Cu, Zn, Cd, Mo, Tl, W), and lithogenic component trapped during nodule growth (Ga, Rb, Ba, and Cs). Ce accumulation in the REE composition is maximal in the upper and lower parts of the nodule characterized by minimal Mn/Fe values. A compositional comparison of manganese micronodules and surface layers of the nodule demonstrates that micronodule material was subjected to more intense reworking during diagenesis of sediments. The micronodules are characterized by higher Mn/Fe and P/Fe, but lower Ni/Cu and Co/Ni ratios. The micronodules and nodules do not differ in terms of contents of Ce and Th that are the least mobile elements during diagenesis. Differences in chemical composition of the micronodules and nodules are related not only to additional input of Mn in the process of diagenesis, but also to transformation of iron oxyhydroxides after removal of Mn from the close association with Fe formed in suspended matter during sedimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonate veins hosted in ultramafic basement drilled at two sites in the Mid Atlantic Ridge 15°N area record two different stages of fluid-basement interaction. A first generation of carbonate veins consists of calcite and dolomite that formed syn- to postkinematically in tremolite-chlorite schists and serpentine schists that represent gently dipping large-offset faults. These veins formed at temperatures between 90 and 170 °C (oxygen isotope thermometry) and from fluids that show intense exchange of Sr and Li with the basement (87Sr/86Sr = 0.70387 to 0.70641, d7Li L-SVEC = + 3.3 to + 8.6 per mil). Carbon isotopic compositions range to high d13C PDB values (+ 8.7 per mil), indicating that methanogenesis took place at depth. The Sr-Li-C isotopic composition suggests temperatures of fluid-rock interaction that are much higher (T > 350-400 °C) than the temperatures of vein mineral precipitation inferred from oxygen isotopes. A possible explanation for this discrepancy is that fluids cooled conductively during upflow within the presumed detachment fault. Aragonite veins were formed during the last 130 kyrs at low-temperatures within the uplifted serpentinized peridotites. Chemical and isotopic data suggest that the aragonites precipitated from cold seawater, which underwent overall little exchange with the basement. Oxygen isotope compositions indicate an increase in formation temperature of the veins by 8-12 °C within the uppermost ~ 80 m of the subseafloor. This increase corresponds to a high regional geothermal gradient of 100-150 °C/km, characteristic of young lithosphere undergoing rapid uplift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultramafic-hosted Logatchev Hydrothermal Field (LHF) at 15°N on the Mid-Atlantic Ridge and the Arctic Gakkel Ridge (GR) feature carbonate precipitates (aragonite, calcite, and dolomite) in voids and fractures within different types of host rocks. We present chemical and Sr isotopic compositions of these different carbonates to examine the conditions that led to their formation. Our data reveal that different processes have led to the precipitation of carbonates in the various settings. Seawater-like 87Sr/86Sr ratios for aragonite in serpentinites (0.70909 to 0.70917) from the LHF are similar to those of aragonite from the GR (0.70912 to 0.70917) and indicate aragonite precipitation from seawater at ambient conditions at both sites. Aragonite veins in sulfide breccias from LHF also have seawater-like Sr isotope compositions (0.70909 to 0.70915), however, their rare earth element (REE) patterns show a clear positive europium (Eu) anomaly indicative of a small (< 1%) hydrothermal contribution. In contrast to aragonite, dolomite from the LHF has precipitated at much higher temperatures (~100 °C), and yet its 87Sr/86Sr ratios (0.70896 to 0.70907) are only slightly lower than those of aragonite. Even higher temperatures are calculated for the precipitation of deformed calcite veins in serpentine-talc fault schists form north of the LHF. These calcites show unradiogenic 87Sr/86Sr ratios (0.70460 to 0.70499) indicative of precipitation from evolved hydrothermal fluids. A simple mixing model based on Sr mass balance and enthalpy conservation indicates strongly variable conditions of fluid mixing and heat transfers involved in carbonate formation. Dolomite precipitated from a mixture of 97% seawater and 3% hydrothermal fluid that should have had a temperature of approximately 14 °C assuming that no heat was transferred. The much higher apparent precipitation temperatures based on oxygen isotopes (~ 100 °C) may be indicative of conductive heating, probably of seawater prior to mixing. The hydrothermal calcite in the fault schist has precipitated from a mixture of 67% hydrothermal fluid and 33% seawater, which should have had an isenthalpic mixing temperature of ~ 250 °C. The significantly lower temperatures calculated from oxygen isotopes are likely due to conductive cooling of hydrothermal fluid discharging along faults. Rare earth element patterns corroborate the results of the mixing model, since the hydrothermal calcite, which formed from waters with the greatest hydrothermal contribution, has REE patterns that closely resemble those of vent fluids from the LHF. Our results demonstrate, for the first time, that (1) precipitation from pure seawater, (2) conductive heating of seawater, and (3) conductive cooling of hydrothermal fluids in the sub-seafloor all can lead to carbonate precipitation within a single ultramafic-hosted hydrothermal system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petrological and geochemical data obtained on Neogene magmatism restricted to a deep fault in Andree Land at Spitsbergen Island, which was related to the overall restyling of the Arctic territory at 25-20 Ma, indicate that the derivation of the Neogene magmas was significantly affected by the continental pyroxenite mantle. The Neogene basalts are noted for a radiogenic isotopic composition of Pb (207Pb/204Pb= 15.5-15.55, 206Pb/204Pb = 18.4-18.6, 208Pb/204Pb = 38.4-38.6) and Sr (87Sr/86Sr = 0.7038-0.7048) at low 143Nd/144Nd = 0.5129. Melts of this type are the extremely enriched end member of the isotopic mixing of a depleted and enriched sources and determine a geochemical trend that passes through the compositions of alkaline magmas from Quaternary volcanoes at Spitsbergen and weakly enriched tholeiites of the Knipovich Ridge, which started to develop simultaneously with the onset of Neogene magmatism in the western part of Spitsbergen. The composition of the liquidus olivine (which is rich in NiO) indicates that melting occurred in the olivine-free mantle. Our data thus testify that a significant role in the genesis of the Neogene magmas was played by continental pyroxenite mantle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graywackes and shales of the Bol'shoi Lyakhov Island originally attributed to Mesozoic were subsequently considered based on microfossils as Late Proterozoic in age. At present, these sediments in the greater part of the island are dated back to Permian based on palynological assemblages. In the examined area of the island, this siliciclastic complex is intensely deformed and tectonically juxtaposed with blocks of oceanic and island-arc rocks exhumed along the South Anyui suture. The complex is largely composed of turbidites with members displaying hummocky cross-stratification. Studied mineral and geochemical charac¬teristics of the rocks defined three provenances of clastic material: volcanic island arc, sedimentary cover and/or basement of an ancient platform, and exotic blocks of oceanic and island-arc rocks such as serpentinites and amphibolites. All rock associations represent elements of an orogenic structure that originated by collision of the New Siberian continental block with the Anyui-Svyatoi Nos island arc. Flyschoid sediments accumu¬lated in a foredeep in front of the latter structure in the course of collision. Late Jurassic volcanics belonging to the Anyui-Svyatoi Nos island arc determine the lower age limit of syncollision siliciclastic rocks. Presence of Late Jurassic zircons in sandstones of the flyschoid sequence in the Bol'shoi Lyakhov Island is confirmed by fission-track dating. The upper age limit is determined by Aptian-Albian postcollision granites and diorites intruding the siliciclastic complex. Consequently, the flyschoid sequence is within stratigraphic range from the terminal Late Jurassic to Neocomian. It appears that Permian age of sediments suggested earlier is based on redeposited organic remains. The same Late Jurassic-Neocomian age and lithology are characteristic of fossiliferous siliciclastic sequences of the Stolbovoi and Malyi Lyakhov islands, the New Siberian Archipelago, and of graywackes in the South Anyui area in the Chukchi Peninsula. All these sediments accumulated in a spacious foredeep that formed in the course the late Cimmerian orogeny along the southern margin of the Arctic conti¬nental block.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ~3*10**6 km**2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96+/-0.16, n=64 out of 79 samples, 2sigma) and initial Nd-Pb isotopic compositions (e.g. 143Nd/144Ndin=0.51291+/-3, epsilon-Nd i=7.3+/-0.6, 206Pb/204Pbin=18.86+/-0.12, n=54 out of 66, 2sigma). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/4He in olivines of enriched picrites at Quepos are ~12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been <=500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.