358 resultados para Macrofauna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the near future, the marine environment is likely to be subjected to simultaneous increases in temperature and decreased pH. The potential effects of these changes on intertidal, meiofaunal assemblages were investigated using a mesocosm experiment. Artificial Substrate Units containing meiofauna from the extreme low intertidal zone were exposed for 60 days to eight experimental treatments (four replicates for each treatment) comprising four pH levels: 8.0 (ambient control), 7.7 & 7.3 (predicted changes associated with ocean acidification), and 6.7 (CO2 point-source leakage from geological storage), crossed with two temperatures: 12 °C (ambient control) and 16 °C (predicted). Community structure, measured using major meiofauna taxa was significantly affected by pH and temperature. Copepods and copepodites showed the greatest decline in abundance in response to low pH and elevated temperature. Nematodes increased in abundance in response to low pH and temperature rise, possibly caused by decreased predation and competition for food owing to the declining macrofauna density. Nematode species composition changed significantly between the different treatments, and was affected by both seawater acidification and warming. Estimated nematode species diversity, species evenness, and the maturity index, were substantially lower at 16 °C, whereas trophic diversity was slightly higher at 16 °C except at pH 6.7. This study has demonstrated that the combination of elevated levels of CO2 and ocean warming may have substantial effects on structural and functional characteristics of meiofaunal and nematode communities, and that single stressor experiments are unlikely to encompass the complexity of abiotic and biotic interactions. At the same time, ecological interactions may lead to complex community responses to pH and temperature changes in the interstitial environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intertidal and subtidal soft bottom macro- and meiofauna of a glacier fjord on Spitsbergen was studied after complete ice melt in June 2003. The abundances of the benthic fauna were within the range reported from estuaries and similar intertidal areas of boreal regions. The high proportion of juveniles in the eulittoral zone indicated larval recruitment from subtidal areas. The macrobenthic fauna can be divided into an intertidal and a subtidal community, both being numerically dominated by annelids. Deposit feeders were numerically predominant in intertidal sites, whereas suspension feeders were most abundant in the subtidal area. Among the meiofauna, only the benthic copepods were identified to species, revealing ecological adaptations typical for intertidal species elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.3, significantly reduced SCOC on average by 60% and benthic nitrification rates on average by 94% in both sediment types in February (pre-bloom period), but not in April (bloom period). No changes in macrofauna functional community (density, structural and functional diversity) were observed between ambient and acidified conditions, suggesting that changes in benthic biogeochemical cycling were predominantly mediated by changes in the activity of the microbial community during the short-term incubations (14 days), rather than by changes in engineering effects of bioturbating and bio-irrigating macrofauna. As benthic nitrification makes up the gross of ocean nitrification, a slowdown of this nitrogen cycling pathway in both permeable and fine sediments in winter, could therefore have global impacts on coupled nitrification-denitrification and hence eventually on pelagic nutrient availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total sediment oxygen consumption rates (TSOC or Jtot), measured during sediment-water incubations, and sediment oxygen microdistributions were studied at 16 stations in the Arctic Ocean (Svalbard area). The oxygen consumption rates ranged between 1.85 and 11.2 mmol m**-2 d**-1, and oxygen penetrated from 5.0 to >59 mm into the investigated sediments. Measured TSOC exceeded the calculated diffusive oxygen fluxes (Jdiff) by 1.1-4.8 times. Diffusive fluxes across the sediment-water interface were calculated using the whole measured microprofiles, rather than the linear oxygen gradient in the top sediment layer. The lack of a significant correlation between found abundances of bioirrigating meiofauna and high Jtot/Jdiff ratios as well as minor discrepancies in measured TSOC between replicate sediment cores, suggest molecular diffusion, not bioirrigation, to be the most important transport mechanism for oxygen across the sediment-water interface and within these sediments. The high ratios of Jtot/Jdiff obtained for some stations were therefore suggested to be caused by topographic factors, i.e. underestimation of the actual sediment surface area when one-dimensional diffusive fluxes were calculated, or sampling artifacts during core recovery from great water depths. Measured TSOC correlated to water depth raised to the -0.4 to -0.5 power (TSOC = water depth**-0.4 to -0.5) for all investigated stations, but they could be divided into two groups representing different geographical areas with different sediment oxygen consumption characteristics. The differences in TSOC between the two areas were suggested to reflect hydrographic factors (such as ice coverage and import/production of reactive particulate organic material) related to the dominating water mass (Atlantic or polar) in each of the two areas. The good correlation between TSOC and water depth**-0.4 to -0.5 rules out any of the stations investigated to be topographic depressions with pronounced enhanced sediment oxygen consumption.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: