347 resultados para Jørgensen, Torstein: Synder og pavemakt
Resumo:
Working with subsistence whale hunters, we tagged 19 mostly immature bowhead whales (Balaena mysticetus) with satellite-linked transmitters between May 2006 and September 2008 and documented their movements in the Chukchi Sea from late August through December. From Point Barrow, Alaska, most whales moved west through the Chukchi Sea between 71° and 74° N latitude; nine whales crossed in six to nine days. Three whales returned to Point Barrow for 13 to 33 days, two after traveling 300 km west and one after traveling ~725 km west to Wrangel Island, Russia; two then crossed the Chukchi Sea again while the other was the only whale to travel south along the Alaskan side of the Chukchi Sea. Seven whales spent from one to 21 days near Wrangel Island before moving south to northern Chukotka. Whales spent an average of 59 days following the Chukotka coast southeastward. Kernel density analysis identified Point Barrow, Wrangel Island, and the northern coast of Chukotka as areas of greater use by bowhead whales that might be important for feeding. All whales traveled through a potential petroleum development area at least once. Most whales crossed the development area in less than a week; however, one whale remained there for 30 days.
Resumo:
Sediments of upwelling regions off Namibia, Peru, and Chile contain dense populations of large nitrate-storing sulfide-oxidizing bacteria, Thiomargarita, Beggiatoa, and Thioploca. Increased contents of monounsaturated C16 and C18 fatty acids have been found at all stations studied, especially when a high density of sulfide oxidizers in the sediments was observed. The distribution of lipid biomarkers attributed to sulfate reducers (10MeC16:0 fatty acid, ai-C15:0 fatty acid, and mono-O-alkyl glycerol ethers) compared to the distribution of sulfide oxidizers indicate a close association between these bacteria. As a consequence, the distributions of sulfate reducers in sediments of Namibia, Peru, and Chile are closely related to differences in the motility of the various sulfide oxidizers at the three study sites. Depth profiles of mono-O-alkyl glycerol ethers have been found to correlate best with the occurrence of large sulfide-oxidizing bacteria. This suggests a particularly close link between mono-O-alkyl glycerol ether-synthesizing sulfate reducers and sulfide oxidizers. The interaction between sulfide-oxidizing bacteria and sulfate-reducing bacteria reveals intense sulfur cycling and degradation of organic matter in different sediment depths.