222 resultados para Indonesian Throughflow


Relevância:

10.00% 10.00%

Publicador:

Resumo:

While part of a single country, the Indonesian archipelago covers several biogeographic regions, and the high levels of national shipping likely facilitate transfer of non-native organisms between the different regions. Two vessels of a domestic shipping line appear to have served as a transport vector for the Asian green mussel Perna viridis (Linnaeus, 1758) between regions. This species is indigenous in the western but not in the eastern part of the archipelago, separated historically by the Sunda Shelf. The green mussels collected from the hulls of the ferries when in eastern Indonesia showed a significantly lower body condition index than similar-sized individuals from three different western-Indonesian mussel populations. This was presumably due to reduced food supply during the ships' voyages. Although this transportinduced food shortage may initially limit the invasive potential (through reduced reproductive rates) of the translocated individuals, the risk that the species will extend its distributional range further into eastern Indonesia is high. If the species becomes widely established in eastern Indonesia, there will then be an increased risk of incursions to Australia, where the mussel is listed as a high-priority pest species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian-Indonesian monsoon has a governing influence on the agricultural practices and livelihood in the highly populated islands of Indonesia. However, little is known about the factors that have influenced past monsoon activity in southern Indonesia. Here, we present a ~6000 years high-resolution record of Australian-Indonesian summer monsoon (AISM) rainfall variations based on bulk sediment element analysis in a sediment archive retrieved offshore northwest Sumba Island (Indonesia). The record suggests lower riverine detrital supply and hence weaker AISM rainfall between 6000 yr BP and ~3000 yr BP compared to the Late Holocene. We find a distinct shift in terrigenous sediment supply at around 2800 yr BP indicating a reorganization of the AISM from a drier Mid Holocene to a wetter Late Holocene in southern Indonesia. The abrupt increase in rainfall at around 2800 yr BP coincides with a grand solar minimum. An increase in southern Indonesian rainfall in response to a solar minimum is consistent with climate model simulations that provide a possible explanation of the underlying mechanism responsible for the monsoonal shift. We conclude that variations in solar activity play a significant role in monsoonal rainfall variability at multi-decadal and longer timescales. The combined effect of orbital and solar forcing explains important details in the temporal evolution of AISM rainfall during the last 6000 years. By contrast, we find neither evidence for volcanic forcing of AISM variability nor for a control by long-term variations in the El Niño-Southern Oscillation (ENSO).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have analyzed the Nd isotopic composition of both ancient seawater and detrital material from long sequences of carbonated oozes of the South Indian Ocean which are ODP Site 756 (Ninety East Ridge (-30°S), 1518 m water depth) and ODP Site 762 (Northwest Australian margin, 1360 m water depth). The measurements indicate that the epsilon-Nd changes in Indian seawater over the last 35 Ma result from changes in the oceanic circulation, large volcanic and continental weathering Nd inputs. This highlights the diverse nature of those controls and their interconnections in a small area of the ocean. These new records combined with those previously obtained at the equatorial ODP Sites 757 and 707 in the Indian Ocean (Gourlan et al., 2008, doi:10.1016/j.epsl.2007.11.054) established that the distribution of intermediate seawater epsilon-Nd was uniform over most of the Indian Ocean from 35 Ma to 10 Ma within a geographical area extending from 40°S to the equator and from -60°E to 120°E. However, the epsilon-Nd value of Indian Ocean seawater which kept an almost constant value (at about -7 to -8) from 35 to 15 Ma rose by 3 epsilon-Nd units from 15 to 10 Ma. This sharp increase has been caused by a radiogenic Nd enrichment of the water mass originating from the Pacific flowing through the Indonesian Passage. Using a two end-members model we calculated that the Nd transported to the Indian Ocean through the Indonesian Pathway was 1.7 times larger at 10 Ma than at 15 Ma. The Nd isotopic composition of ancient seawater and that of the sediment detrital component appear to be strongly correlated for some specific events. A first evidence occurs between 20 and 15 Ma with two positive spikes recorded in both epsilon-Nd signals that are clearly induced by a volcanic crisis of, most likely, the St. Paul hot-spot. A second evidence is the very large epsilon-Nd decrease recorded at ODP Sites 756 and 762 during the past 10 Ma which has never been previously observed. The synchronism between the epsilon-Nd decrease in seawater from 10 to 5 Ma and evidences of desertification in the western part of the nearly Australian continent suggests enhanced weathering inputs in this ocean from this continent as a result of climatic changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To reconstruct the still poorly understood thermocline fluctuations in the western tropical Indian Ocean, a sediment core located off Tanzania (GeoB12610-2; 04°49.00'S, 39°25.42'E, 399?m water depth) covering the last 35 ka was analysed. Mg/Ca-derived temperatures from the planktonic foraminifera Globigerinoides ruber (white) and Neogloboquadrina dutertrei indicate that the last glacial was ~2.5 °C colder in the surface waters and ~3.5 °C colder in the thermocline compared with the present day. The depth of the thermocline and thus the stratification of the water column were shallower during glacial periods and deepened during the deglaciation and Holocene. The increased inflow of Southern Ocean Intermediate Waters via 'ocean tunnels' appears to cool the thermocline from below, leading to a similarity between the thermocline record of GeoB12610-2 with the Antarctic EDML temperature curve during the glacial. With rising sea level and the corresponding greater inflow of Red Sea Waters and Indonesian Intermediate Waters, the proportion of Southern Ocean Intermediate Water within the South Equatorial Current is reduced and, by Holocene time, the correlation to Antarctica is barely traceable. Comparison with the eastern Indian Ocean reveals that the thermocline depth reverses from the last glacial to present.