233 resultados para Hindi Kahani Ka Samajsatriy Adhyayan
Resumo:
The last glacial millennial climatic events (i.e. Dansgaard-Oeschger and Heinrich events) constitute outstanding case studies of coupled atmosphere-ocean-cryosphere interactions. Here, we investigate the evolution of sea-surface and subsurface conditions, in terms of temperature, salinity and sea ice cover, at very high-resolution (mean resolution between 55 and 155 years depending on proxies) during the 35-41 ka cal BP interval covering three Dansgaard-Oeschger cycles and including Heinrich event 4, in a new unpublished marine record, i.e. the MD99-2285 core (62.69°N; -3.57s°E). We use a large panel of complementary tools, which notably includes dinocyst-derived sea-ice cover duration quantifications. The high temporal resolution and multiproxy approach of this work allows us to identify the sequence of processes and to assess ocean-cryosphere interactions occurring during these periodic ice-sheet collapse events. Our results evidence a paradoxical hydrological scheme where (i) Greenland interstadials are marked by a homogeneous and cold upper water column, with intensive winter sea ice formation and summer sea ice melting, and (ii) Greenland and Heinrich stadials are characterized by a very warm and low saline surface layer with iceberg calving and reduced sea ice formation, separated by a strong halocline from a less warm and saltier subsurface layer. Our work also suggests that this stadial surface/subsurface warming started before massive iceberg release, in relation with warm Atlantic water advection. These findings thus support the theory that upper ocean warming might have triggered European ice-sheet destabilization. Besides, previous paleoceanographic studies conducted along the Atlantic inflow pathways close to the edge of European ice-sheets suggest that such a feature might have occurred in this whole area. Nonetheless, additional high resolution paleoreconstructions are required to confirm such a regional scheme.
Stable carbon isotope ratios of carbon dioxide from EDC and Berkner Island ice cores for 40-50 ka BP
Resumo:
The stable carbon isotopic signature of carbon dioxide (d13CO2) measured in the air occlusions of polar ice provides important constraints on the carbon cycle in past climates. In order to exploit this information for previous glacial periods, one must use deep, clathrated ice, where the occluded air is preserved not in bubbles but in the form of air hydrates. Therefore, it must be established whether the original atmospheric d13CO2 signature can be reconstructed from clathrated ice. We present a comparative study using coeval bubbly ice from Berkner Island and ice from the bubble-clathrate transformation zone (BCTZ) of EPICA Dome C (EDC). In the EDC samples the gas is partitioned into clathrates and remaining bubbles as shown by erroneously low and scattered CO2 concentration values, presenting a worst-case test for d13CO2 reconstructions. Even so, the reconstructed atmospheric d13CO2 values show only slightly larger scatter. The difference to data from coeval bubbly ice is statistically significant. However, the 0.16 per mil magnitude of the offset is small for practical purposes, especially in light of uncertainty from non-uniform corrections for diffusion related fractionation that could contribute to the discrepancy. Our results are promising for palaeo-atmospheric studies of d13CO2 using a ball mill dry extraction technique below the BCTZ of ice cores, where gas is not subject to fractionation into microfractures and between clathrate and bubble reservoirs.