197 resultados para Heinrich events


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea surface temperatures (SSTs) recorded by alkenones and oxygen isotopes in the Alboran basin are used here to describe, at an unprecedented fine temporal resolution, the present interglaciation (PIG, initiated at 11.7 ka BP), the last interglaciation (LIG, onset approximately at 129 ka) and respective deglaciations. Similarities and dissimilarities in the progression of these periods are reviewed in comparison with ice cores and stalagmites. Cold spells coeval with the Heinrich events (H) described in the North Atlantic include multi-decadal scale oscillations not previously obvious (up to 4 °C in less than eight centuries within the stadials associated with H1 and H11, ca 133 ka and 17 ka respectively). These abrupt oscillations precede the accumulation of organic rich layers deposited when perihelion moves from alignment with NH spring equinox to the summer solstice, a reference for deglaciations. Events observed during the last deglaciation at 17 ka, 14.8 ka and 11.7 ka are reminiscent of events occurred during the penultimate deglaciation at ca 136 ka, 132 ka and 129 ka, respectively. The SST trend during the PIG is no more than 2 °C (from 20 °C to 18 °C; up to ?0.2 °C/ka). The trend is steeper during the LIG, i.e. up to a 5 °C change from the early interglaciation to immediately before the glacial inception (from 23 °C to 18 °C; up to -0.4 °C/ka). Events are superimposed upon a long term trend towards colder SSTs, beginning with SST maxima followed by temperate periods until perihelion aligned with the NH autumn equinox (before ca 5.3 ka for the PIG and 121 ka for the LIG). A cold spell of around eight centuries at 2.8 ka during the PIG was possibly mimicked during the LIG at ca 118 ka by a SST fall of around 1 °C in a millennium. These events led interglacial SST to stabilise at around 18 °C. The glacial inception, barely evident at the beginning ca 115 ka (North Atlantic event C25, after perihelion passage in the NH winter solstice), culminated with a SST drop of at least 2 °C in two millennia (event C24, ca 111 ka). The Little Ice Age (0.7 ka) also occurred after the latest perihelion passage in the NH winter solstice and could be an example of how a glacial pre-inception event following an interglaciation might be.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relict dune fields that are found as far south as 14° N in the modern-day African Sahel are testament to equatorward expansions of the Sahara desert during the Late Pleistocene. However, the discontinuous nature of dune records means that abrupt millennial-timescale climate events are not always resolved. High-resolution marine core studies have identified Heinrich stadials as the dustiest periods of the last glacial in West Africa although the spatial evolution of dust export on millennial timescales has so far not been investigated. We use the major-element composition of four high-resolution marine sediment cores to reconstruct the spatial extent of Saharan-dust versus river-sediment input to the continental margin from West Africa over the last 60 ka. This allows us to map the position of the sediment composition corresponding to the Sahara-Sahel boundary. Our records indicate that the Sahara-Sahel boundary reached its most southerly position (13° N) during Heinrich stadials and hence suggest that these were the periods when the sand dunes formed at 14° N on the continent. Heinrich stadials are associated with cold North Atlantic sea surface temperatures which appear to have triggered abrupt increases of aridity and wind strength in the Sahel. Our study illustrates the influence of the Atlantic meridional overturning circulation on the position of the Sahara-Sahel boundary and on global atmospheric dust loading.