270 resultados para Extreme west of Paraná
Resumo:
Bathymetry based on data recorded during M72-1 between 07.02.2007 and 20.02.2007 in the Black Sea. The main focus of the cruise were gas vents and seeps in the north-western Black Sea below 700 m water depth which is the zone of gas hydrate stability. The main target area was the deep Dnepr Canyon west of the Crimea Peninsula where previous investigations had indicated the occurrence of gas seepage.
Resumo:
Bathymetry based on data recorded during M72-1 between 07.02.2007 and 20.02.2007 in the Black Sea. The main focus of the cruise were gas vents and seeps in the north-western Black Sea below 700 m water depth which is the zone of gas hydrate stability. The main target area was the deep Dnepr Canyon west of the Crimea Peninsula where previous investigations had indicated the occurrence of gas seepage.
Resumo:
Heavy or high-specific gravity minerals make up a small but diagnostic component of sediment that is well suited for determining the provenance and distribution of sediment transported through estuarine and coastal systems worldwide. By this means, we see that surficial sand-sized sediment in the San Francisco Bay Coastal System comes primarily from the Sierra Nevada and associated terranes by way of the Sacramento and San Joaquin Rivers and is transported with little dilution through the San Francisco Bay and out the Golden Gate. Heavy minerals document a slight change from the strictly Sierran-Sacramento mineralogy at the confluence of the two rivers to a composition that includes minor amounts of chert and other Franciscan Complex components west of Carquinez Strait. Between Carquinez Strait and the San Francisco Bar, Sierran sediment is intermingled with Franciscan-modified Sierran sediment. The latter continues out the Gate and turns southward towards beaches of the San Francisco Peninsula. The Sierran sediment also fans out from the San Francisco Bar to merge with a Sierran province on the shelf in the Gulf of the Farallones. Beach-sand sized sediment from the Russian River is transported southward to Point Reyes where it spreads out to define a Franciscan sediment province on the shelf, but does not continue southward to contribute to the sediment in the Golden Gate area.
Resumo:
We present a high-resolution marine record of sediment input from the Guayas River, Ecuador, that reflects changes in precipitation along western equatorial South America during the last 18ka. We use log (Ti/Ca) derived from X-ray Fluorescence (XRF) to document terrigenous input from riverine runoff that integrates rainfall from the Guayas River catchment. We find that rainfall-induced riverine runoff has increased during the Holocene and decreased during the last deglaciation. Superimposed on those long-term trends, we find that rainfall was probably slightly increased during the Younger Dryas, while the Heinrich event 1 was marked by an extreme load of terrigenous input, probably reflecting one of the wettest period over the time interval studied. When we compare our results to other Deglacial to Holocene rainfall records located across the tropical South American continent, different modes of variability become apparent. The records of rainfall variability imply that changes in the hydrological cycle at orbital and sub-orbital timescales were different from western to eastern South America. Orbital forcing caused an antiphase behavior in rainfall trends between eastern and western equatorial South America. In contrast, millennial-scale rainfall changes, remotely connected to the North Atlantic climate variability, led to homogenously wetter conditions over eastern and western equatorial South America during North Atlantic cold spells. These results may provide helpful diagnostics for testing the regional rainfall sensitivity in climate models and help to refine rainfall projections in South America for the next century.