232 resultados para Extraction of Sedimentary Phosphorus
Resumo:
This data set contains measurements of dissolved phosphorus (total dissolved nitrogen: TDP, dissolved inorganic phosphorus: PO4P and dissolved organic phosphorus: DOP) in samples of soil water collected in 2002 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled bi-weekly, in 2002 at the 23.10.2002; 05.11.2002; 20.11.2002; 05.12.2002; and 28.12.2002, and analyzed for dissolved inorganic P (PO4P) and total dissolved phosphorus (TDP). Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA SAN++, Skalar [Breda, The Netherlands]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. Total dissolved P in soil solution was analyzed by irradiation with UV and oxidation with K2S2O8 followed by reaction with ammonium molybdate (Skalar catnr. 503-553w/r). As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar). Dissolved organic P (DOP) in soil solution was calculated as the difference between TDP and PO4P. In a low number of samples, TDP was equal to or smaller than PO4P; in these cases, DOP was assumed to be zero.
Resumo:
The Antarctic Intermediate Water (AAIW) is a key player in global-scale oceanic overturning processes and an important conduit for heat, fresh water, and carbon transport. The AAIW past variability is poorly understood mainly due to the lack of sedimentary archives at intermediate water depths. We present records of benthic stable isotopes from sediments retrieved with the seafloor drill rig MARUM-MeBo at 956 m water depth off northern Chile (GeoB15016, 27°29.48'S, 71°07.58'W) that extend back to 970 ka. The sediments at this site are presently deposited at the boundary between AAIW and Pacific Deep Water (PDW). For previous peak interglacials, our results reveal similar benthic d13C values at site GeoB15016 and of a newly generated stack of benthic d13C from various deep Pacific cores representing the "average PDW." This suggests, unlike today, the absence of AAIW at the site and the presence of nearly pure PDW. In contrast, more positive d13C values at site GeoB15016 compared to the stack imply a considerable AAIW contribution during cold phases of interglacials and especially during glacials. Besides, we used three short sediment cores to reconstruct benthic d13C values from the AAIW core during the last glacial and found a d13C signature similar to today's. Assuming that this was the case also for the past 970 kyr, we demonstrate that sea level changes and latitudinal migrations of the AAIW formation site can only account for about 50% of the full range of past d13C increases at site GeoB15016 during cold periods. Other processes that could explain the remaining of the positive d13C anomalies are increases in glacial AAIW production and/or deeper convection of the AAIW with respect to preceding interglacials.
Resumo:
The monogragh contains results of mineralogicai and geochemical studies of Mesozoic and Cenozoic deposits from the Pacific Ocean collected during Deep Sea Drilling Project. Special attention is paid on the aspects of geochemical history of post-Jurassic sedimentation in the central part of the Northwest Pacific, detailed characteristics of the main stages of sedimentary evolution are given: Early Cretaceons (protooceanic), Late Cretaceons (transitional) and Cenozoic (oceanic). Results of mineralogical and geochemical studies of hydrothermal deposits from the Galapagos Rift are given as well.
Resumo:
Thirty-five samples from Hole 778A were prepared for X-ray diffraction (XRD) mineralogical analyses and for chemical analyses of major and trace elements. Most of the selected samples were silt- and sand-sized sedimentary serpentinites or microbreccias except for a soft clast of mafic rock, a hard clast of massive serpentinized peridotite, and a pebble of consolidated, undeformed serpentine microbreccia that contained planktonic foraminifers. Both mineralogical and geochemical analyses allow discrimination of three groups among the analyzed samples. These groups correspond to three stratigraphic intervals present along the drilled section. Group A contains the upper samples (lithologic Unit I). These consist of poorly consolidated serpentine muds carrying hard-rock clasts (serpentinized peridotites, metabasalts). They are characterized by the following mineralogical assemblage: serpentine, Fe-oxides and hydroxides, aragonite, and halite. They exhibit variable SiO2, MgO contents, but are characterized by a SiO2/MgO ratio near 1. CaO content is high in relation to development of aragonite. Al2O3 content is low. Relatively high K2O, Na2O, and Sr contents are present, presumably in relation to interactions with seawater. Group B (30-77 mbsf) contains samples exhibiting very homogeneous chemical and mineralogical compositions. They consist of serpentinite microbreccias exhibiting frequent shear structures. Hard-rock clasts are also present (serpentinized peridotites, metabasalts, one possible chert fragment). The mineralogy of the Group B samples is characterized by the presence of serpentine and authigenic minerals: hydroxycarbonates and hydrogrossular. Calcite and chlorite are also present, but all the samples lack aragonite. Their chemical compositions are remarkably similar to compositions of their parent rocks. Group C contains silt- and sand-sized serpentine and serpentine microbreccias, which are locally rich in red clasts, probably strongly altered (oxidized?) mafic fragments. Intervals having clasts of more diverse origin than those higher in the section were recovered. Clast lithology includes serpentinized peridotites, metabasalts, metavolcaniclastite, meta-olivine gabbro, and amphibolite sandstone. Mineralogy and geochemistry reflect these compositions. Serpentine content of the samples is less than in previous groups. Correlatively, sepiolite, palygorskite, and chlorite-smectite are mineral phases present in the analyzed samples. Accessory igneous minerals (amphiboles, pyroxenes, hematite) also were found. The chemical compositions of most of Group C samples differ from that of massive serpentinized peridotites. The main differences are (1) higher SiO2, CaO, TiO2 and Al2O3 contents, (2) a SiO2/MgO ratio greater than 1, and (3) a negative correlation between Al2O3, and MgO, Cr, and Ni. These characteristics suggest new constraints relative to the flow structure of the flank of Conical Seamount.
Resumo:
Subcontinuously cored early(?)-middle Miocene to recently deposited sediments from ODP Site 645 were studied texturally, mineralogically, and geochemically. The entire sequence contains minerals and associated chemical elements that are chiefly of detrital origin. In particular, the clay minerals, which include smectite, kaolinite, chlorite, and illite, are detrital. No obvious evidence of diagenesis with depth, of burial, of volcanism, or of hydrothermal alteration was observed. The sedimentary textures, clay mineralogy, and <2-µm fraction geochemistry of the early middle Miocene sediments (630 to 1147 mbsf) suggest the pronounced but variable influence of a southward bottom current. Two clay facies are defined. The lower one, Cj (780 to 1147 mbsf), is characterized by the great abundance of discrete smectite (with less than 15% illite interlayers), probably detrital in origin, and reworked older, discrete, smectite-rich sediments. The upper clay facies, C2 (630 to 780 mbsf), shows a net decrease of the fully expandable clay abundances, with a great abundance of mixed-layer, illite-smectite clays (60 to 80% of illite interlayers). Such clay assemblages can be inherited from paleosoils or older sedimentary rocks. An important change occurs at 630 mbsf (clay fraction) or 600 mbsf (sedimentary texture), which may be explained by the beginning of continental glaciation (630 mbsf, ~9 Ma) and the onset of ice rafting in Baffin Bay (600 mbsf, ~8 Ma). Above this level, the characteristics and modifications of the clay assemblages are controlled climatically and can be explained by the fluctuations of (1) ice-rafting, (2) speed of weak bottom currents, and (3) some supply by mud turbiditic currents. Three clay facies (C3, C4, and C5) can be defined by the abrupt increases of the inherited chlorite and illite clays.
Resumo:
The diagenesis and geochemical evolution of deep-sea sediments are controlled by the interaction between sediments and their associated pore waters. With increasing depth, the pore water of Hole 149 (DSDP) exhibits a strong depletion in Mg and a corresponding enrichment in Ca, while the alkalinity remains relatively constant. Dissolved SiO2 is nearly constant in the upper 100 m of sediment, but is highly enriched in the deepest pore waters. The pore waters exhibit a depletion in K with increasing depth, and O18/O16 pore water ratios also decrease. The sediment section has three zones of sedimentary regimes with increasing depth in the drill hole: an upper 100 m section of detrital clays, a middle section enriched in calc-akalic volcanics which have undergone submarine weathering to a smectite phase, and a lower section of siliceous ooze which still has a diagenetic smectite phase. The quartz-feldspar ratios and O18/O16 composition of the silicate phases are in agreement with these interpretations. The submarine weathering of volcanics to a smectite can account for the observed pore water gradients. Volcanics release Ca and Mg to the pore waters causing the alkalinity values to increase. Smectite is formed, depletes the pore waters in Mg and O18 and causes the alkalinity to decrease. The net reaction allows for the observed relationship between pore water Ca and Mg gradients with little net change in alkalinity. Given the abundance of volcanics in many deep-sea sediments, especially in lower sections which often form near ridge crests, the submarine formation of smectite may be an additional oceanic Mg sink which has not yet been fully considered.
Resumo:
Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 µm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher similarity of both sample types in the deep sediment. In summary, Soxhlet extraction of sediments accessed a larger and more complex pool of organic matter than present in interstitial water DOM.
Resumo:
Chemical analyses have been carried out on 40 samples from the sediment surface and 210 samples from cores that were taken from the edge of the African continental block at the Arabian Sea (coasts of Somalia and Kenya, from Cape Guardafui to Mombasa) on the occasion of the Indian Ocean Expedition of the German research vessel "Meteor" during the years 1964/65. The carbonate content shows its maximum on the northern part of the continental shelf of Africa, where fossil reef debris furnish the detritic portion of carbonate. In the southern part of the continental shelf of Africa the portion of carbonate is low, as it is heavily diluted by the non-carbonatic detritus. It is also in the deep-sea that a lower carbonate content is encountered below the calcite compensation depth. Trace elements in the carbonates: On the shelf and in its vicinity Sr and Mg are enriched. The enrichment has been brought about by the portion of reef debris, as this latter contains aragonite (enrichment of Sr) as well as high-magnesium calcite. The greatest part of the slope contains carbonates that are poor in trace elements and mainly made up of foraminifera (and of coccoliths). Below the carbonate compensation depth another enrichment of Mg takes place in the carbonates, which is probably due to a selective dissolution of calcite in comparison to dolomite. The iron and manganese contents of the carbonates are high (iron higher in coast proximity, manganese higher in the depth), but not genuine, as they come about in the course of the extraction of the carbonates as a result of the dissolution of authigenic Mn-Fe-minerals. Non-carbonatic portion of the sediments: In coast proximity an enrichment of quartz comes about. Within the quartz-rich zone it is the elements V, Cr, Fe, Ti, and B that have been enriched in the non-carbonatic components. This enrichment must be attributed to an elevated content of heavy minerals. In the case of Ti and Fe the preliminary enrichment brought about by processes of lateritisation on the continent plays a certain role. Toward the deep-sea an enrichment of the elements Mn Ni, Cu, and Zn takes place; these enrichments must be explained by authigenic Mn-Fe-minerals. Within the Mn-rich zone a belt running parallel to the coast stands out that shows an increased Mn-enrichment. However, this increase in enrichment does not apply to the elements Ni, Cu, and Zn. It is probable that this latter increased enrichment comes about as a result of the migration of manganese to the sediment surface. (Within the sediments there prevail reductive conditions, in the presence of which Mn is capable of migration, whereas at the sediment surface its precipitation comes about under oxidizing conditions). The quantity of organic matter mainly is dependent on grain size and on the rate of sedimentation. On the shelf an impoverishment of organic matter is to be encountered, as the sediments are coarse-grained. In the depth the impoverishment must be explained on the strength of a small rate of sedimentation. Between those two ranges organic substance is enriched. P and N show an enrichment in comparison to Corg with this applying all the more the smaller the absolute quantity of Corg is. In this particular case one has to do with an enrichment coming about during the diagenetic processes of organic matter. A comparison with the sediments from the Indian and Pakistani continental border in Arabian Sea shows as follows: on the African continental border the coarse detrital material has been transported farther out to deep-sea, which has something to do with the greater inclination of the surface of sedimentation. Carbonate is found in greater abundance on the African side. Its chemical composition is influenced by reef-debris which is missing by Indian-Pakistani side. The content of organic matter is lower on the African side. Contrary to that, the enrichments of N and P compared to organic matter are of an equal order of magnitude on both sides of the Arabian Sea.
Resumo:
Forms of phosphorus were determined for the first time in the area under study. Based on the ratio between organic and inorganic forms of phosphorus, it is concluded that sorption processes in the thin surface layer and photosynthetic processes in surface water are of the same intensity. Extremely high values of total phosphorus in the thin layer may be indicators of water pollution.
Resumo:
Changes in concentration levels and speciation of heavy metals during sedimentation on example of a typical semi-closed bay, where bottom sediments have formed due to river run-off, are under consideration. It is shown that due to desorption of mobile manganese, zinc and copper entered the bay with river suspended matter, their total contents in bottom sediments decrease and percentages of lithogenic forms increase. Contents and speciation of iron in bottom sediments are determined by its participation in coagulation of river colloids in the mixing zone and by mechanical differentiation of sedimentary material.
Resumo:
Changes in concentration levels and speciation of heavy metals during sedimentation on example of a typical semi-closed bay, where bottom sediments have formed due to river run-off, are under consideration. It is shown that due to desorption of mobile manganese, zinc and copper entered the bay with river suspended matter, their total contents in bottom sediments decrease and percentages of lithogenic forms increase. Contents and speciation of iron in bottom sediments are determined by its participation in coagulation of river colloids in the mixing zone and by mechanical differentiation of sedimentary material.
Resumo:
We describe interactive effects of total phosphorus (total P = 0.1-4.0 µmol/L; added as H2NaPO4), irradiance (40 and 150 µmol quanta/m**2/s), and the partial pressure of carbon dioxide (P-CO2; 19 and 81 Pa, i.e., 190 and 800 ppm) on growth and CO2- and dinitrogen (N-2)-fixation rates of the unicellular N-2-fixing cyanobacterium Crocosphaera watsonii (WH0003) isolated from the Pacific Ocean near Hawaii. In semicontinuous cultures of C. watsonii, elevated P-CO2 positively affected growth and CO2- and N-2-fixation rates under high light. Under low light, elevated P-CO2 positively affected growth rates at all concentrations of P, but CO2- and N-2-fixation rates were affected by elevated P-CO2 only when P was low. In both high-light and low-light cultures, the total P requirements for growth and CO2- and N-2-fixation declined as P-CO2 increased. The minimum concentration (C-min) of total P and half-saturation constant (K-1/2) for growth and CO2- and N-2-fixation rates with respect to total P were reduced by 0.05 µmol/L as a function of elevated P-CO2. We speculate that low P requirements under high P-CO2 resulted from a lower energy demand associated with carbon-concentrating mechanisms in comparison with low-P-CO2 cultures. There was also a 0.10 µmol/L increase in C-min and K-1/2 for growth and N-2 fixation with respect to total P as a function of increasing light regardless of P-CO2 concentration. We speculate that cellular P concentrations are responsible for this shift through biodilution of cellular P and possibly cellular P uptake systems as a function of increasing light. Changing concentrations of P, CO2, and light have both positive and negative interactive effects on growth and CO2-, and N-2-fixation rates of unicellular oxygenic diazotrophs like C. watsonii.