910 resultados para EQUATORIAL PACIFIC
Resumo:
A key constraint in attempts to reconstruct the patterns and rates of the ocean's thermohaline circulation during the last glacial period is the difference between the 14C to C ratio in surface and deep water. While imperfect, it is our best index of past deep-sea ventilation rates. In this paper we review published ventilation rate estimates based on the measured radiocarbon age difference between coexisting benthic and planktic foraminifera from glacial-age Pacific sediments. We also present new results from a series of eastern equatorial Pacific sediment cores. The conclusion is that the scatter in these results is so large that the apparent 14C age of glacial deep Pacific water could lie anywhere between double and half today's. Further, it is not clear what is responsible for the wide scatter in the radiocarbon results.
Resumo:
Adsorption of ion, nickel, cobalt, and manganese from ocean water by calcareous sediments, diatomaceous ooze, hydrogenous sediments, and red clay was studied under close to natural conditions using a tracer method. It was found that hydrogenous sediments selectively remove manganese from seawater. This may be associated with formation of chemical compounds between manganese and sediment material. It was also found that nickel, manganese, and iron exist in the ocean in several ionic and neutral forms. Cobalt typically present in only one ionic form Co(2+).
Resumo:
Core-top samples from the eastern tropical Pacific (10°N to 20°S) were used to test whether the ratio between Globorotalia menardii cultrata and Neogloboquadrina dutertrei abundance (Rc/d) and the oxygen isotope composition (?18O) of planktonic foraminifera can be used as proxies for the latitudinal position of the Equatorial Front. Specifically, this study compares the ?18O values of eight species of planktonic foraminifera (Globigerinoides ruber sensu stricto (ss) and sensu lato (sl), Globigerinoides sacculifer, Globigerinoides triloba, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii menardii, Globorotalia menardii cultrata and Globorotalia tumida) with the seasonal hydrography of the region, and evaluates the application of each species or combination of species for paleoceanographic reconstructions. The results are consistent with sea surface temperature and water column stratification patterns. We found that in samples north of 1°N, the Rc/d values tend to be higher and d18O values of G. ruber, G. sacculifer, G. triloba, P. obliquiloculata, N. dutertrei, and G. menardii cultrata tend to be lower than those from samples located south of 1°N. We suggest that the combined use of Rc/d and the d18O difference between G. ruber and G. tumida or between P. obliquiloculata and G. tumida are the most suitable tools for reconstructing changes in the latitudinal position of the Equatorial Front and changes in the thermal stratification of the upper water column in the eastern tropical Pacific.
Resumo:
In order to understand the vertical transport of particulate matter, suspended and settling particles were collected along a meridional transect between 46°N and 35°S and an equatorial longitudinal transect between 135°E and 175°E in the Pacific. The low COrganic/N atomic ratios (<8.2) of suspended particulate organic matter (OM) and good correlation between particulate organic carbon (OC) and chlorophyll-a confirmed that the suspended particulate OM in the surface water was mainly produced by phytoplankton. Only 0.1-3.2% of primary production was transported to 1.3 km water depth in the boreal central Pacific. All data on settling particles (excluding deep trap data) showed strongly positive correlation between total mass and OM fluxes with high correlation factor of 0.93. Biogenic opal-producing plankton, mainly diatoms were responsible for most of the vertical transport of particulate OM in association with higher COrganic/CCarbonate ratios in the subarctic and equatorial hemipelagic regions in the Pacific. This vertical transport of settling particles potentially works as a sink of CO2. In the transition zone during the May 1993, large difference between PCO2 (<300 µatm) in the surface water and pCO2 (340 µatm) in the atmosphere was actually due to enhanced particulate OM flux. Since the deep water of the Pacific is enriched in CO2 and nutrients, upwelled seawater may tend to release CO2 to the atmosphere. However, higher production of particulate matter could reduce the partial pressure of CO2 in the surface water. Also terrestrial nutrients' inputs in the western equatorial Pacific have potential for the reduction of CO2 in the surface water.
Resumo:
Detailed mineralogical characterization of micronodules is given. The main regularities of variations in composition of micronodules from Central Pacific sedimentary rocks of different ages are revealed. New data on structure and structural features of manganese minerals are reported.
Resumo:
A radioisotope energy-dispersive X-ray (EDX) system has been used on board the German research vessel "Valdivia" during an exploration expedition in the northern equatorial Pacific in 1973. The instrumentation used consisted of an X-ray detection system incorporating a 30 mm2 effective-area Si (Li) detector with a measured energy resolution of 195 eV for Mn K alpha X-rays, standard nuclear electronics, a 1024-channel analyser and a data read-out unit. The X-ray spectra in the manganese-nodule samples were excited by a 30-mCi 238Pu source. The six elements Mn, Fe, Co, Ni, Cu and Zn were analysed on board. Precision values for the analyses were less than 3% for Mn, Fe, Ni, Cu and Zn and about 5% for Co. A total amount of 350 analyses was carried out during a one-month cruise. Average contents of 190 analysed whole manganese-nodule samples from all the sampling sites of the covered area were 23.3% Mn, 6.7% Fe, 0.23% Co, 1.16% Ni, 0.94% Cu and 0.10% Zn. The average content of the base metals expressed as the sum of the Co, Ni, Cu and Zn contents was 2.48%. A linear relationship between Mn and Ni in all analysed samples, including whole manganese-nodule samples, zones of manganese nodules and manganese crusts, was observed. The Mn/Ni ratio calculated by regression analysis was 23.0. Zonal variations of the chemical contents of the six elements in the manganese nodules were found. A size classification of the manganese nodules has been suggested. Geochemical correlations of Cu and Ni versus Mn/Fe in the investigated samples are given.
Resumo:
Changes in El Niño-Southern Oscillation (ENSO) variability are difficult to extract from paleoceanographic reconstructions because they are superimposed on changes in seasonal variability that modulate the first-order climate signal. Here we address this problem by reconstructing thermocline structure from a marine sediment core retrieved from the eastern equatorial Pacific. At the core location, changes in hydrologic parameters within the thermocline are linked to ENSO activity, with a reduced influence of seasonal variability compared to surface waters. We performed repeated isotopic analyses (d18O) on single specimens of the thermocline-dwelling planktonic foraminifera Neogloboquadrina dutertrei at several targeted time periods over the last 50 ka to extract the total thermocline variance, a parameter supposed to reveal changes in ENSO. No fundamental changes in amplitude and frequency of the events were detected despite differences in climatic background. However, our data suggest that long-term variations in the thermocline variability occurred over the last 50 ka, with the highest and lowest ENSO activities occurring during the last glacial period and the Last Glacial Maximum, respectively.
Resumo:
Compositional data for coexisting manganese nodules, micronodules, sediments and pore waters from five areas in the equatorial and S.W. Pacific have been obtained. This represents the largest study of its type ever undertaken to establish the distribution of elements between the various phases within the sediment column. The composition of manganese nodules, micronodules and sediments (on a carbonate-free basis) shows marked differences between the equatorial high productivity zone and the low productivity region of the S.W. Pacific. In the case of the nodules, th is reflects an increased supply of transition elements (notably Ni, Cu and Zn) to the nodules as a result of the in situ dissolution of siliceous tests within the sediment column in the equatorial Pacific high productivity zone. Micronodules display similar, but somewhat different, compositions to those of the associated nodules in each area. Micronodule composition is therefore influenced by the same basic factors that control nodule composition, but is modified by dissolution of the micronodules in situ within the sediment column. Locally, as in the area immediately south of the Marquesas Fracture Zone, the micronodule population is contaminated by small, angular volcanic rock fragments; this leads to apparently anomalous micronodule compositions. Micronodules appear to be a transient feature in the sediment column, especially in the equatorial Pacific. Dissolution of micronodules in the sediment column therefore represents an important source of elements for the growth of manganese nodules in the equatorial Pacific. Sediment composition is markedly influenced by the carbonate content. On a carbonate-free basis, the sediments from the equatorial high productivity zone are quite distinct in composition from those in the S.W. Pacific. This reflects differences in the lithology of the sediments. In the Aitutaki Passage, the local influence of volcanoclastic material in sediment composition has been established. The major cations and anions in pore waters measured here show no major differences between equatorial and S.W. Pacific sediments. Silica is, however, higher in equatorial Pacific pore waters reflecting the dissolution of siliceous tests in these sediments.
Resumo:
Active fluorescence (fast repetition rate fluorometry, FRRF) was used to follow the photosynthetic response of the phytoplankton community during the 13-day Southern Ocean Iron RElease Experiment (SOIREE). This in situ iron enrichment was conducted in the polar waters of the Australasian-Pacific sector of the Southern Ocean in February 1999. Iron fertilisation of these high nitrate low chlorophyll (HNLC) waters resulted in an increase in the photosynthetic competence (Fv/Fm) of the resident cells from around 0.20 to greater than 0.60 (i.e. close to the theoretical maximum) by 10/11 days after the first enrichment. Although a significant iron-mediated response in Fv/Fm was detected as early as 24 h after the initial fertilisation, the increase in Fv/Fm to double ambient levels took 6 days. This response was five-fold slower than observed in iron enrichments (in situ and in vitro) in the HNLC waters of the subarctic and equatorial Pacific. Although little is known about the relationship between water temperature and Fv/Fm, it is likely that low water temperatures - and possibly the deep mixed layer - were responsible for this slow response time. During SOIREE, the photosynthetic competence of the resident phytoplankton in iron-enriched waters increased at dissolved iron levels above 0.2 nM, suggesting that iron limitation was alleviated at this concentration. Increases in Fv/Fm of cells within four algal size classes suggested that all taxa displayed a photosynthetic response to iron enrichment. Other physiological proxies of algal iron stress (such as flavodoxin levels in diatoms) exhibited different temporal trends to iron-enrichment than Fv/Fm during the time-course of SOIREE. The relationship between Fv/Fm, algal growth rate and such proxies in Southern Ocean waters is discussed.