736 resultados para Deep-sea moorings.
Resumo:
The Labrador Sea is a particularly suitable high-latitude basin for investigating U and Th behavior in deep-sea sediments. During the late Quaternary, the cyclic development and decay of huge ice sheets on adjacent land masses resulted in large-amplitude changes in sedimentation rates and organic paleoproductivities. The resulting magnification of U and Th response is well illustrated by high-resolution studies on piston-cored sediments from the Greenland continental rise at Ocean Drilling Program Leg 105 Site 646 spanning isotopic stages 8 to 1. Our results show a clear positive correlation of 238U/232Th ratios with organic paleoproductivity indicators (e.g., dinocyst) due to U uptake in the water column and/or during the early early diagenesis of organic matter responding to carbon fluxes and to their climate forcing. 230Th excesses over 234U exceed the theoretical value of the 230Th rain from the overlying water column, indicating lateral input possibly from the Greenland slope and shelf. Because these horizontal fluxes of 230Th may be partly controlled by physical parameters, 230Th excesses cannot be unequivocally correlated with sedimentation rates and/or productivity as reported elsewhere. In this subarctic basin characterized by low overall organic carbon burial, the 238U/232Th ratio appears to be a sensible geochemical indicator of organic activity and paleoproductivity.
Resumo:
Mineralogy and geochemistry of low-temperature hydrothermal manifestations occurring on the surface of basalts and in their cracks within a submarine volcano in the north-eastern part of the Kuril deep-sea basin have been studied. The following order of isolation of mineral phases has been found out: Fe-rich sulphides (pyrite) - Fe-rich layered silicates (hydromica of celadonite-nontronite type) - amorphous silica (opal) - Fe-oxyhydroxides (goethite) - Mn-oxyhydroxides (vernadite). Sulphide mineralization is of the phenocryst-stockwork type. Finding of pure barite fragments does not exclude presence of hydrothermal exhalations (smokers) on this volcanic structure.
Resumo:
The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.