217 resultados para Chicago, Rock Island, and Pacific Railway Company.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the subduction input flux of nitrogen (N) in altered oceanic crust (AOC) is critical in any attempt to mass-balance N across arc-trench systems on a global or individual-margin basis. We have employed sealed-tube, carrier-gas-based methods to examine the N concentrations and isotopic compositions of AOC. Analyses of 53 AOC samples recovered on DSDP/ODP legs from the North and South Pacific, the North Atlantic, and the Antarctic oceans (with larger numbers of samples from Site 801 outboard of the Mariana trench and Site 1149 outboard of the Izu trench), and 14 composites for the AOC sections at Site 801, give N concentrations of 1.3 to 18.2 ppm and d15N_air of -11.6? to +8.3?, indicating significant N enrichment probably during the early stages of hydrothermal alteration of the oceanic basalts. The N-d15N modeling for samples from Sites 801 and 1149 (n=39) shows that the secondary N may come from (1) the sedimentary N in the intercalated sediments and possibly overlying sediments via fluid-sediment/rock interaction, and (2) degassed mantle N2 in seawater via alteration-related abiotic reduction processes. For all Site 801 samples, weak correlation of N and K2O contents indicates that the siting of N in potassic alteration phases strongly depends on N availability and is possibly influenced by highly heterogeneous temperature and redox conditions during hydrothermal alteration. The upper 470-m AOC recovered by ODP Legs 129 and 185 delivers approximately 800 kg/km N annually into the Mariana margin. If the remaining less-altered oceanic crust (assuming 6.5 km, mostly dikes and gabbros) has MORB-like N of 1.5 ppm, the entire oceanic crust transfers 5100 kg/km N annually into that trench. This N input flux is twice as large as the annual N input of 2500 kg/km in seafloor sediments subducting into the same margin, demonstrating that the N input in oceanic crust, and its isotopic consequences, must be considered in any assessment of convergent margin N flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analysed alkenones in 149 surface sediments from the eastern South Atlantic in order to establish a sediment-based calibration of the U37K' paleotemperature index. Our study covers the major tropical to subpolar production systems and sea-surface temperatures (SST's) between 0° and 27°C. In order to define the most suitable calibration for this region, the U37K' values were correlated to seasonal, annual, and production-weighted annual mean atlas temperatures and compared to previously published culture and core-top calibrations. The best linear correlation between U37K' and SST was obtained using annual mean SST from 0 to 10 m water depth (U37K' = 0.033 T + 0.069, r**2 = 0.981). Data scattering increased significantly using temperatures of waters deeper than 20 m, suggesting that U37K' reflects mixed-layer SST and that alkenone production at thermocline depths was not high enough to significantly bias the mixed-layer signal. Regressions based on both production-weighted and on actual annual mean atlas SST were virtually identical, indicating that regional variations in the seasonality of primary production have no discernible effect on the U37K' vs. SST relationship. Comparison with published core-top calibrations from other oceanic regions revealed a high degree of accordance. We, therefore, established a global core-top calibration using U37K' data from 370 sites between 60°S and 60°N in the Atlantic, Indian, and Pacific Oceans and annual mean atlas SST (0-29°C) from 0 m water depth. The resulting relationship (U37K' = 0.033 T + 0.044, r**2 = 958) is identical within error limits to the widely used E. huxleyi calibrations of and attesting their general applicability. The observation that core-top calibrations extending over various biogeographical coccolithophorid zones are strongly linear and in better accordance than culture calibrations suggests that U37K' is less species-dependent than is indicated by culture experiments. The results also suggest that variations in growth rate of algae and nutrient availability do not significantly affect the sedimentary record of U37K' in open ocean environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During ODP Leg 168, 10 sites were drilled across the eastern flank of the Juan de Fuca Ridge (JdFR), to examine the conditions of fluid-rock interaction in three distinct hydrothermal regimes (referred to as the Hydrothermal Transition (HT), Buried Basement (BB) and Rough Basement (RB) transects), extending over a ~120 km linear transect perpendicular to the spreading ridge. This was carried out in an attempt to constrain the conditions and processes that control the location, style and magnitude of low temperature (<150°C) fluid-rock interaction within this setting. This paper presents new data on the petrology, mineral chemistry and whole rock strontium and oxygen isotopic compositions of basalts from the eastern flank of the JdFR, in order to investigate the extent, style and sequence of low-temperature hydrothermal alteration and to establish how the hydrothermal regime evolved with time. Throughout the flank, a progressive sequence of low-temperature hydrothermal alteration has been identified, marked by changes in the dominant secondary mineral assemblage, changing from: chlorite+chlorite/smectite; to iron oyxhydroxide+celadonite; to saponite+/-pyrite; culminating at present with Ca- to CaMg(+/-Fe,Mn)-carbonate. The changes in secondary mineralogy have been used to infer a series of systematic shifts in the conditions of alteration that occurred as the basement moved off-axis and was progressively buried by sediment. In general, hydrothermal alteration of the uppermost oceanic crust commenced under open, oxidative conditions, with interaction between unmodified to slightly modified seawater and basaltic crust, to a regime in which circulation of a strongly modified seawater-derived fluid was more restricted, and alteration occurred under non-oxidative conditions. Across the flank, petrological observations and microprobe analyses indicate that the observed ranges in secondary mineral composition are directly related to changes in the geochemical and textural characteristics of the basement, as well as to interaction between fluids and phases from the four stages of alteration. This is suggestive of an increase in fluid-rock increased with time. Whole rock 87Sr/86Sr and d18O analyses of basalts from across the eastern flank of the JdFR reinforce petrological observations, with 87Sr/86Sr and d18O values slightly elevated above accepted pristine MORB values for this region. These results are consistent with an increase in the amount of fluid-rock interaction with time. Across the flank, enrichment in the 87Sr/86Sr and d18O relative to MORB, is influenced by a number of factors, including: local and regional variations in the crustal lithology and structure; the age of the crust; the extent of bulk rock alteration; and theoretically, the relative abundance of different isotopically-enriched secondary mineral phases in the crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-resolution delta18O and delta13C records of benthic foraminifera from a 150,000-year long core from the Caribbean Sea indicate that there was generally high delta13C during glaciations and low delta13C during interglaciations. Due to its 1800-m sill depth, the properties of deep water in the Caribbean Sea are similar to those of middepth tropical Atlantic water. During interglaciations, the water filling the deep Caribbean Sea is an admixture of low delta13C Upper Circumpolar Water (UCPW) and high delta13C Upper North Atlantic Deep Water (UNADW). By contrast, only high delta13C UNADW enters during glaciations. Deep ocean circulation changes can influence atmospheric CO2 levels (Broecker and Takahashi, 1985; Boyle, 1988 doi:10.1029/JC093iC12p15701; Keir, 1988 doi:10.1029/PA003i004p00413; Broecker and Peng, 1989 doi:10.1029/GB003i003p00215). By comparing delta13C records of benthic foraminifera from cores lying in Southern Ocean Water, the Caribbean Sea, and at several other Atlantic Ocean sites, the thermohaline state of the Atlantic Ocean (how close it was to a full glacial or full interglacial configuration) is characterized. A continuum of circulation patterns between the glacial and interglacial extremes appears to have existed in the past. Subtracting the deep Pacific (~mean ocean water) delta13C record from the Caribbean delta13C record yields a record which describes large changes in the Atlantic Ocean thermohaline circulation. The delta13C difference varies as the vertical nutrient distribution changes. This new proxy record bears a striking resemblance to the 150,000-year-long atmospheric CO2 record (Barnola et al., 1987 doi:10.1038/329408a0). This favorable comparison between the new proxy record and the atmospheric CO2 record is consistent with Boyle's (1988a) model that vertical nutrient redistribution has driven large atmospheric CO2 changes in the past. Changes in the relative contribution of NADW and Pacific outflow water to the Southern Ocean are also consistent with Broecker and Peng's (1989) recent model for atmospheric CO2 changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Miocene carbon shift (~6.2 Myr) -a 0.5-1.0 per mil, d13C decrease in benthic and planktonic foraminifera- has been ascribed to changes in global inventory, deep-ocean circulation, and/or productivity. Cadmium, d13C, and nutrients in the ocean are linked; comparison of d13C and Cd/Ca yields circulation and chemical inventory information not available from either alone. We determined Cd/Ca ratios in late Miocene benthic foraminifera from DSDP Site 289. Results include: (1) late Miocene Pacific Cd/Ca values fall between those of late Quaternary Atlantic and Pacific benthic foraminifera; (2) there are no systematic Cd/Ca offsets between Cibicidoides kullenbergi, Cibicidoides wuellerstorfi and Uvigerina spp.; and (3) there is a very slight Cd/Ca change coincident with d13C. Cd/Ca, slightly higher in younger, isotopically lighter samples, exhibits a smaller increase than predicted if circulation were the primary cause of the carbon shift. The carbon shift may have been due to a long-term shift in the steady-state carbon isotope input or to a change in the sedimentation of organic carbon relative to calcium carbonate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous workers identified a magnetically anomalous clay layer deposited on the northern United States Atlantic Coastal Plain during the Paleocene-Eocene thermal maximum (PETM). The finding inspired the highly controversial hypothesis that a cometary impact triggered the PETM. Here we present ferromagnetic resonance (FMR), isothermal and anhysteretic remanent magnetization, first-order reversal curve, and transmission electron microscopy analyses of late Paleocene and early Eocene sediments in drill core from Ancora, New Jersey. A novel paleogeographic analysis applying a recent paleomagnetic pole from the Faeroe Islands indicates that New Jersey during the initial Eocene had a ~6°-9° lower paleolatitude (~27.3° for Ancora) and a more zonal shoreline trace than in conventional reconstructions. Our investigations of the PETM clay from Ancora reveal abundant magnetite nanoparticles bearing signature traits of crystals produced by magnetotactic bacteria. This result, the first identification of ancient biogenic magnetite using FMR, argues that the anomalous magnetic properties of the PETM sediments are not produced by an impact. They instead reflect environmental changes along the eastern margin of North America during the PETM that led to enhanced production and/or preservation of magnetofossils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generated preliminary downcore records of total organic carbon content, calcium carbonate, long-chain n-alkane concentration, total alkenone concentration, and alkenone-based sea-surface temperature for samples from the easternmost flank of Nazca Ridge (Site 1237) and the eastern crest of Carnegie Ridge (Site 1239). Total organic carbon and long-chain n-alkane concentrations will be used to evaluate terrestrial sediment sources. Downcore records of alkenone sea-surface temperature will benefit studies of paleoceanography of the southeastern Pacific. Since these sites are located under the influence of major tectonic events, such as the uplift of the Andes Mountains and the closure of the Isthmus of Panama, the records will help us to examine the effects of the tectonic events on the oceanic environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstruction of nutrient concentrations in the deep Southern Ocean has produced conflicting results. The cadmium/calcium (Cd/Ca) data set suggests little change in nutrient concentrations during the last glacial period, whereas the carbon isotope data set suggests that nutrient concentrations were higher. We determined the silicon isotope composition of sponge spicules from the Atlantic and Pacific sectors of the Southern Ocean and found higher silicic acid concentrations in the Pacific sector during the last glacial period. We propose that this increase results from changes in the stoichiometric uptake of silicic acid relative to nitrate and phosphate by diatoms, thus facilitating a redistribution of nutrients across the Pacific and Southern Oceans. Our results are consistent with the global Cd/Ca data set and support the silicic acid leakage hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogenic components of sediment accumulated at high rates beneath frontal zones of the Indian and Pacific oceans during the late Miocene and early Pliocene. The delta13C of bulk and foraminiferal carbonate also decreased during this time interval. Although the two observations may be causally linked, and signify a major perturbation in global biogeochemical cycling, no site beneath a frontal zone has independent records of export production and delta13C on multiple carbonate phases across the critical interval of interest. Deep Sea Drilling Project (DSDP) site 590 lies beneath the Tasman Front (TF), an eddy-generating jetstream in the southwest Pacific Ocean. To complement previous delta13C records of planktic and benthic foraminifera at this location, late Neogene records of CaCO3 mass accumulation rate (MAR), Ca/Ti, Ba/Ti, Al/Ti, and of bulk carbonate and foraminiferal delta13C were constructed at site 590. The delta13C records include bulk sediment, bulk sediment fractions (<63 µm and 5-25 µm), and the planktic foraminifera Globigerina bulloides, Globigerinoides sacculifer (with and without sac), and Orbulina universa. Using current time scales, CaCO3 MARs, Ca/Ti, Al/Ti and Ba/Ti ratios are two to three times higher in upper Miocene and lower Pliocene sediment relative to overlying and underlying units. A significant decrease also occurs in all delta13C records. All evidence indicates that enhanced export production - the 'biogenic bloom' - extended to the southwest Pacific Ocean between ca. 9 and 3.8 Ma, and this phenomenon is coupled with changes in delta13C - the 'Chron C3AR carbon shift'. However, CaCO3 MARs peak ca. 5 Ma whereas elemental ratios are highest ca. 6.5 Ma; foraminiferal delta13C starts to decrease ca. 8 Ma whereas bulk carbonate delta13C begins to drop ca. 5.6 Ma. Temporal discrepancies between the records can be explained by changes in the upwelling regime at the TF, perhaps signifying a link between changes in ocean-atmosphere circulation change and widespread primary productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ODP Site 1089 is optimally located in order to monitor the occurrence of maxima in Agulhas heat and salt spillage from the Indian to the Atlantic Ocean. Radiolarian-based paleotemperature transfer functions allowed to reconstruct the climatic history for the last 450 kyr at this location. A warm sea surface temperature anomaly during Marine Isotope Stage (MIS) 10 was recognized and traced to other oceanic records along the surface branch of the global thermohaline (THC) circulation system, and is particularly marked at locations where a strong interaction between oceanic and atmospheric overturning cells and fronts occurs. This anomaly is absent in the Vostok ice core deuterium, and in oceanic records from the Antarctic Zone. However, it is present in the deuterium excess record from the Vostok ice core, interpreted as reflecting the temperature at the moisture source site for the snow precipitated at Vostok Station. As atmospheric models predict a subtropical Indian source for such moisture, this provides the necessary teleconnection between East Antarctica and ODP Site 1089, as the subtropical Indian is also the source area of the Agulhas Current, the main climate agent at our study location. The presence of the MIS 10 anomaly in the delta13C foraminiferal records from the same core supports its connection to oceanic mechanisms, linking stronger Agulhas spillover intensity to increased productivity in the study area. We suggest, in analogy to modern oceanographic observations, this to be a consequence of a shallow nutricline, induced by eddy mixing and baroclinic tide generation, which are in turn connected to the flow geometry, and intensity, of the Agulhas Current as it flows past the Agulhas Bank. We interpret the intensified inflow of Agulhas Current to the South Atlantic as responding to the switch between lower and higher amplitude in the insolation forcing in the Agulhas Current source area. This would result in higher SSTs in the Cape Basin during the glacial MIS 10, due to the release into the South Atlantic of the heat previously accumulating in the subtropical and equatorial Indian and Pacific Ocean. If our explanation for the MIS 10 anomaly in terms of an insolation variability switch is correct, we might expect that a future Agulhas SSST anomaly event will further delay the onset of next glacial age. In fact, the insolation forcing conditions for the Holocene (the current interglacial) are very similar to those present during MIS 11 (the interglacial preceding MIS 10), as both periods are characterized by a low insolation variability for the Agulhas Current source area. Natural climatic variability will force the Earth system in the same direction as the anthropogenic global warming trend, and will thus lead to even warmer than expected global temperatures in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean delta13C values were 0.46 per mil lower during the last glacial maximum than during the Late Holocene. The geographic distribution of delta13C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high delta13C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean delta13C values during the glaciation are lower than both North Atlantic and Pacific delta13C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched 13C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have assessed the reliability of several foraminifer-hosted proxies of the ocean carbonate system (d11B, B/Ca, and U/Ca) using Holocene samples from the Atlantic and Pacific oceans. We examined chemical variability over a range of test sizes for two surface-dwelling foraminifers (Globigerinoides sacculifer and Globigerinoides ruber). Measurements of d11B in G. ruber show no significant relationship with test size in either Atlantic or Pacific sites and appear to provide a robust proxy of surface seawater pH. Likewise there is no significant variability in the d11B of our Atlantic core top G. sacculifer, but we find that d11B increases with increasing test size for G. sacculifer in the Pacific. These systematic differences in d11B are inferred to be a consequence of isotopically light gametogenic calcite in G. sacculifer and its preferential preservation during postdepositional dissolution. The trace element ratio proxies of ocean carbonate equilibria, U/Ca and B/Ca, show systematic increases in both G. ruber and G. sacculifer with increasing test size, possibly as a result of changing growth rates. This behavior complicates their use in paleoceanographic reconstructions. In keeping with several previous studies we find that Mg/Ca ratios increase with increasing size fraction in our well-preserved Atlantic G. sacculifer but not in G. ruber. In contrast to previous interpretations we suggest that these observations reflect a proportionally larger influence of compositionally distinct gametogenic calcite in small individuals compared to larger ones. As with d11B this influences G. sacculifer but not G. ruber, which has negligible gametogenic calcite.