700 resultados para BolshayaKuonamka_96-5a
Resumo:
A high-resolution history of paleoceanographic changes in the subpolar waters of the southern margin of the Subtropical Convergence Zone during the last 130 kyr, is present in foraminiferal assemblages of DSDP Site 594. The foraminifera indicate that sea-surface temperatures during the Last Interglacial Climax were warmer than today, and that between substage 5d through to the end of isotope stage 2, temperatures were mostly cooler than Holocene temperatures. The paleotemperatures suggest that (1) the Subtropical Convergence was located over the site during substage 5e, later moving further north, then moving southwards to near the site during the Holocene, and (2) the Polar Front was positioned over the Site during glacial stages 6, 4, 2 and possibly parts of stage 3. Several major events are indicated by the nannofloral assemblages during these large changes in sea-surface temperature and associated reorganization of ocean circulation. First, the time-progressive trends between E. huxleyi and medium to large Gephyrocupsa are unique to this site, with E. huxleyi dominating over medium Gephyrocupsa during stages 5c-a, middle part of stage 4 and after the middle point of stage 3. This unusual trend may (at least partly) be caused by the shift of the Polar Front across the site. Second, upwelling flora (E. huxleyi and small placoliths) increase in abundance during stages 1, 3 and 5, suggesting that upwelling or disturbance of water stratification took place during the interglacials. Thirdly, there are no significant differences between the distribution patterns of the various morphotypes of medium to large Gephyrocupsu, and the combined value of all medium Gephyrocupsu increases in abundance during glacials (stages 2 and 4 and the end of stage 6), similar to the abundance trends in benthic foraminifera. Finally, subordinate nannofossil taxa also show distinctive climatic trends during the last glacial cycle: (1) Syrucosphaera spp. are present in increased abundance during warmer extremes in climate (substages 5e, 5a, and stage 1); (2) Coccolithus pelagicus and Culcidiscus leptoporus dominate the subordinate nannofossil taxa, and their relative proportions seem to provide a useful paleoceanographic index, with C. pelagicus dominating when the Polar Front Zone is over the site (stages 6, 4 and 2), whilst C. leptoporus is relatively more abundant when the STC is positioned over the site (stages 1 and 5e). Increased abundance of C. pelagicus also can indicate intensified coastal upwelling.
Resumo:
Hydrocarbons, sterols and alkenones were analyzed in samples collected from a 10 month sediment trap time series deployed in the Indian Ocean sector of the Southern Ocean. Fluxes and within-class distributions varied seasonally. During higher mass and organic carbon (OC) flux periods, which occurred in austral summer and fall, fresh marine inputs were predominant. Vertical fluxes were most intense in January, but limited to one week in duration. They were, however, low compared with other oceanic regions. In contrast, low mass and OC flux periods were characterized by a strong unresolved complex mixture (UCM) in the hydrocarbon fraction and a high proportion of stanols as a result of zooplanktonic grazing. Terrigenous inputs were not detectable. The alkenone compositions were consistent with previous data on suspended particles from Antarctic waters. However, UK'37 values diverged from the linear and exponential fits established by Sikes et al. (1997, doi:10.1016/S0016-7037(97)00017-3) in the low temperature range. The seasonal pattern of alkenone production implied that IPT (integrated production temperature) is likely to be strongly imprinted by austral summer and fall SST (sea surface temperature).
Resumo:
Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.
Resumo:
The NA64-Mesozooplankton dataset contains biogeochemistry and mesozooplankton data collected in a series of 9 cruises in the Northern Adriatic completed from January 1965 to September 1965 monthly, and December 1965. Biogeochemistry sampling was undertaken using 5L Nansen bottles fired at 0m, 5m, 10m, 20m, 30m and/or bottom depths. The dataset includes 709 samples analysed for nitrate, phosphate, temperature, salinity and density. Mesozooplankton sampling was undertaken at the same locations as for biogeochemistry, using two different net (Hensen non-closing and Appstein closing net). The dataset includes 146 samples analysed for mesozooplankton composition (at higher taxonomic level), abundance and volume settlement. After sedimentation and volume measurement, the fish larva and fish eggs were extracted from samples (egss of Engraulis encrasicholus were determined). Chaetognaths were partly isolated. Identification at higher taxonomic level of zooplankters was completed. Taxonomic identification was done at Smithonian Mediterranean Centre in Salambo. After sedimentation and volume measurement, the fish larva and fish eggs were extracted from samples (egss of Engraulis encrasicholus were determined). Chaetognaths were partly isolated. Identification at higher taxonomic level of zooplankters was completed. Taxonomic identification was done at Smithonian Mediterranean Centre in Salambo.
Resumo:
We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.
Resumo:
In September 1999 two short-term moorings with cylindrical sediment traps were deployed to collect sinking particles in bottom waters off the Ob and Yenisei river mouths. Samples were studied for their bulk composition, pigments, phytoplankton, microzooplankton, fecal material, amino acids, hexosamines, fatty acids and sterols and compared to suspended matter and surface sediments in order to collect information about the nature and cycling of particulate matter in the water column. Results of all measured components in sinking particles point to an ongoing seasonality in the pelagic system from blooming diatoms in the first phase to a more retention system in the second half of trap deployment. Due to a phytoplankton bloom observed north of the Ob estuary, flux rates were generally higher in the trap deployed off the Ob than off the Yenisei. The Ob trap collected fresh surface-derived particulate matter. Particles from the Yenisei trap were more degraded and resembled deep water suspension. This material may partly have been derived from resuspended sediments.
Resumo:
A quantitative analysis was carried out of planktonic diatoms (biogenic opal) and calcareous nannofossils (biogenic calcite) in late Quaternary sediments (MIS 1-6) from four cores along a N-S transect east of New Zealand from 39°50'S to 50°04'S across the E-W-trending submarine ridge, the Chatham Rise. This was done to trace movements of oceanic fronts and to improve calcareous nannofossil stratigraphy for the last 130 000 yr in the SW Pacific. Sites ODP 1123 and Q 858 are below present day subtropical surface waters north of Chatham Rise. Site DSDP 594 is below present-day mixed temperate-subantarctic surface water south of the rise, and site ODP 1120 is below subantarctic surface water. The more diverse and opportunistic planktonic diatoms provided marker species for subtropical surface waters (Alveus marina, Fragilariopsis doliolus, Rhizosolenia bergonii and Azpeitia nodulifer) and others for subantarctic surface waters (Nitzschia kerguelensis, Thalassiosira lentiginosa). Application of these tracers permits the following conclusions: (1) subtropical conditions persisted north of Chatham Rise throughout the past 130 000 yr, in spite of the cooling of surface waters during colder periods; (2) during warm times (MIS 5 and MIS 3, and in MIS 1), the sporadic occurrence of subtropical species south of Chatham Rise indicates occasional admixture of subtropical surface waters that far south; (3) subantarctic waters extended to the southern slopes of the Chatham Rise during MIS 5b, late MIS 5a to early MIS 4, during the warmer time intervals in early MIS 3, and during latest MIS 3 to early MIS 2; (4) subantarctic frontal conditions existed over southern Chatham Rise during early MIS 4 and late MIS 3 to early MIS 2; and (5) it is probable that during cooler times, MIS 6, MIS 5b, and in MIS 2, intensified particle transport from the Bounty Trough to the northern flank of Chatham Rise occurred by intensified boundary currents. The larger abundance fluctuations in both microfossil groups at the sites south of Chatham Rise than north of Chatham Rise reflect northward shifts of the Circumpolar Subantarctic Water (CSW) and a contemporaneous disappearance of Australasian Subantarctic Water (ASW), implying an elevated temperature gradient between the surface water masses north and south of the Chatham Rise at the times of such northward shifts of CSW. Calcareous nannofossils are less diverse than diatoms, and are less specialised. Some calcareous nannofossil species show abundance shifts at the same time at different latitudes. Two of these abundance shifts can be used for correlation between subtropical and subantarctic sediments in the SW Pacific: (1) reversal in the relative abundance of Calcidiscus leptoporus and Coccolithus pelagicus associated with the MIS 2/1 boundary; and (2) drop in abundance of Gephyrocapsa muellerae or medium-sized Gephyrocapsa at the MIS 4/3 boundary. An additional abundance shift seems to be restricted to subtropical to mixed temperate-subtropical-subantarctic surface waters: (3) increase in abundance of G. muellerae or medium-sized Gephyrocapsa at the beginning of MIS 2 below the Okareka tephra.
Resumo:
Basalts drilled from the East Pacific Rise, OCP Ridge, and Siqueiros fracture zone during Leg 54 are texturally diverse. Dolerites are equigranular at Sites 422 and 428 and porphyritic, with phenocrysts of plagioclase (An69.73) and Ca-rich clinopyroxene (Ca42Mg48Fe10) at Site 427. The East Pacific Rise lavas and some of those from the OCP Ridge are fine-grained and porphyritic. The majority of the large crystals are clustered skeletal glomerocrysts of plagioclase An64-77), together with olivine (Fo80-87), Ca-rich clinopyroxene, or both. Euhedral phenocrysts of plagioclase, together with olivine, Carich clinopyroxene, and Cr-Al spinel in some cases, occur in most of the fine-grained lavas. These phenocrysts are small (maximum dimension <1 mm in all but one sample), sparse (combined modal amount <1% in all samples), and distinctive from the megacrysts which characterize many ocean-floor lavas. In two East Pacific Rise lavas, zoned plagioclase (An83 cores) is the sole phenocryst phase. In other porphyritic lavas from all the main East Pacific Rise and OCP Ridge units drilled during Leg 54, the plagioclase phenocrysts contain cores of bytownite (An79-87) surrounded by more-sodic feldspar (An67-77). Core/rim relationships vary from continuous normal zoning, through discontinuous zoning, to extensive resorption of the calcic cores in some samples. The compositions of the plagioclase calcic cores are systematically related to those of the glomerophyric plagioclase and olivine in the lavas containing them. Furthermore, only one compositional population of calcic cores occurs in each rock. The possible causes of these relationships are far from clear. Magma mixing, although superficially applicable, is inconsistent with important aspects of the phenocryst mineralogy of these particular lavas. A more satisfactory model to explain both phenocryst zoning and rapid glomerocryst growth immediately before extrusion may be constructed by postulating influx of water into the upwelling magmas within Layer 3 of the oceanic crust beneath the East Pacific Rise, and subsequent loss of part of this water during effervescence within feeder dykes between Layer 3 and the ocean floor. It is shown that this model is fully consistent with published data on water and carbon dioxide contents and ratios in the pillow-margin glasses, vesicles, and phenocryst inclusions of ocean-floor basalts. The evidence for the precipitation of plagioclase- dominated crystalline assemblages from these magmas in the upper part of Layer 3 is concordant with recent geophysically based modeling of the structure of the East Pacific Rise. Calcium-rich clinopyroxenes in dolerites from the OCP Ridge and Siqueiros fracture zone show radial, oscillatory, and sector-zoning. In Sample 428A-5-2 (Piece 5a), the compositional trends resulting from this zoning closely resemble those of the pyroxenes in some lunar lavas. The controls on crystallization of interstitial pigeonite - epitaxial upon augite - in this rock are discussed. Both sector-zoning of the augite and nucleation of pigeonite within microvolumes of magma with a low Ca(Mg + Fe) ratio appear to be important factors.
Resumo:
Near-shore waters along the northwest African margin are characterized by coastal upwelling and represent one of the world's major upwelling regions. Sea surface temperature (SST) records from Moroccan sediment cores, extending back 2500 years, reveal anomalous and unprecedented cooling during the 20th century, which is consistent with increased upwelling. Upwelling-driven SSTs also vary out of phase with millennial-scale changes in Northern Hemisphere temperature anomalies (NHTAs) and show relatively warm conditions during the Little Ice Age and relatively cool conditions during the Medieval Warm Period. Together, these results suggest that coastal upwelling varies with NHTAs and that upwelling off northwest Africa may continue to intensify as global warming and atmospheric CO2 levels increase.
Resumo:
Variations in deposition of terrigenous fine sediments and their grain-size distributions from a high-resolution marine sediment record offshore northwest Africa (30°51.0'N; 10°16.1'W) document climate changes on the African continent during the Holocene. End-member grain-size distributions of the terrigenous silt fraction, which are related to fluvial and aeolian dust transport, indicate millennial-scale variability in the dominant transport processes at the investigation site off northwest Africa as well as recurring periods of dry conditions in northwest Africa during the Holocene. The terrigenous record from the subtropical North Atlantic reflects generally humid conditions before the Younger Dryas, during the early to mid-Holocene, as well as after 1.3 kyr BP. By contrast, continental runoff was reduced and arid conditions were prevalent at the beginning of the Younger Dryas and during the mid- and late Holocene. A comparison with high- and low-latitude Holocene climate records reveals a strong link between northwest African climate and Northern Hemisphere atmospheric circulation throughout the Holocene. Due to its proximal position, close to an ephemeral river system draining the Atlas Mountains as well as the adjacent Saharan desert, this detailed marine sediment record, which has a temporal resolution between 15 and 120 years, is ideally suited to enhance our understanding of ocean-continent-atmosphere interactions in African climates and the hydrological cycle of northern Africa after the last deglaciation.
Resumo:
Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.