439 resultados para Barium esophagography
A 1.3.3. Data of the batch experiments with the sandy fraction of harbour sediments - trace elements
Resumo:
Sr and Nd isotopic compositions are reported for basaltic rocks collected during ODP Leg 127 from the Yamato Basin, a rifted backarc basin in the Japan Sea. The basalts are classified into two groups in terms of Nd isotopic composition: the upper sills at Site 797 are characterized by higher 143Nd/144Nd ratios (0.513083-0.513158, epsilon-Nd = 8.68-10.14) and the basalts from Site 794 and the lower sills at Site 797 have lower 143Nd/144Nd ratios (0.512684-0.512862, epsilon-Nd = 0.90-4.37). All of the basalts show higher Sr isotopic compositions than those of the mantle array, which is attributed to seawater alteration. The basalts with lower Nd isotopic values ranging in age from 20.6 to 17.3 Ma have tapped an enriched subcontinental upper mantle (SCUM) with the minor involvement of a depleted asthenospheric mantle (AM). Subsequent change in composition through the physical replacement of SCUM by AM yielded the basalts of the upper sills of higher Nd isotopic compositions. This event within the upper mantle was associated with the breakup of the overlying lithosphere during the rifting of the Japan Sea backarc basin.
Resumo:
We analyzed a suite of sediment samples recovered in the central Arctic Ocean for major, trace, and rare earth elements in order to assess changes in terrigenous source material throughout the Cenozoic. The terrigenous component consists of two end-members. Input from a shale-like composition dominates bulk sediments, especially those deposited during the Paleocene and since the Miocene, and may represent sediment supply from the eastern Laptev Sea. Therefore, even though the environment and transport mechanisms may have varied from ice free to ice dominated, sequences of the early Paleogene and later Neogene appear to have been influenced by a single major terrigenous source. This suggests similar transport capabilities and trajectories for both ocean and drift currents through significant parts of the Cenozoic. Influence from a more mafic source appears to be more important through the early Eocene to the middle Miocene and most likely represents material from the western Laptev Sea or Kara Sea. Thus, Eocene major changes in surface water productivity appear broadly synchronous with those in terrigenous provenance. A combination of regional sea level variations, local shelf processes, and transport mechanisms are among the more probable causes for the observed source changes. Although the assignment of sources using chemistry presently is constrained by a lack of data from certain regions (e.g., eastern Siberian Sea) our results generally agree with inferences based on mineralogy or radiogenic isotopes and shed further light on long-term reconstructions of the central Arctic Ocean.
Resumo:
Past changes in North Pacific sea surface temperatures and sea-ice conditions are proposed to play a crucial role in deglacial climate development and ocean circulation but are less well known than from the North Atlantic. Here, we present new alkenone-based sea surface temperature records from the subarctic northwest Pacific and its marginal seas (Bering Sea and Sea of Okhotsk) for the time interval of the last 15 kyr, indicating millennial-scale sea surface temperature fluctuations similar to short-term deglacial climate oscillations known from Greenland ice-core records. Past changes in sea-ice distribution are derived from relative percentage of specific diatom groups and qualitative assessment of the IP25 biomarker related to sea-ice diatoms. The deglacial variability in sea-ice extent matches the sea surface temperature fluctuations. These fluctuations suggest a linkage to deglacial variations in Atlantic meridional overturning circulation and a close atmospheric coupling between the North Pacific and North Atlantic. During the Holocene the subarctic North Pacific is marked by complex sea surface temperature trends, which do not support the hypothesis of a Holocene seesaw in temperature development between the North Atlantic and the North Pacific.