226 resultados para BG Lure


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two 7-day mesocosm experiments were conducted in October 2012 at the Instituto Nacional de Desenvolvimento das Pescas (INDP), Mindelo, Cape Verde. Surface water was collected at night before the start of the respective experiment with RV Islândia south of São Vicente (16°44.4'N, 25°09.4'W) and transported to shore using four 600L food safe intermediate bulk containers. Sixteen mesocosm bags were distributed in four flow-through water baths and shaded with blue, transparent lids to approximately 20% of surface irradiation. Mesocosm bags were filled from the containers by gravity, using a submerged hose to minimize bubbles. The accurate volume inside the individual bags was calculated after addition of 1.5 mmol silicate and measuring the resulting silicate concentration. The volume ranged from 105.5 to 145 L. The experimental manipulation comprised addition of different amounts of inorganic N and P. In the first experiment, the P supply was changed at constant N supply in thirteen of the sixteen units, while in the second experiment the N supply was changed at constant P supply in twelve of the sixteen units. In addition to this, "cornerpoints" were chosen that were repeated during both experiments. Four cornerpoints should have been repeated, but setting the nutrient levels in one mesocosm was not succesfull and therefore this mesocosm also was set at the center point conditions. Experimental treatments were evenly distributed between the four water baths. Initial sampling of the mesocosms on day 1 of each run was conducted between 9:45 and 11:30. After nutrient manipulation, sampling was conducted on a daily basis between 09:00 and 10:30 for days 2 to 8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop continuous stratification in summer for at least 1 month. The modeled vertical heat flux across the bottom sediment tends towards an annual mean of zero, with maximum downward fluxes of about 5 W/m**2 in summer and with heat released back into the water column at a rate of less than 1 W/m**2 during the ice-covered period. The lakes are shown to be efficient heat absorbers and effectively distribute the heat through mixing. Monthly bottom water temperatures during the ice-free period range up to 15 °C and are therefore higher than the associated monthly air or ground temperatures in the surrounding frozen permafrost landscape. The investigated lakes remain unfrozen at depth, with mean annual lake-bottom temperatures of between 2.7 and 4 °C.