335 resultados para Autotrophic Denitrification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence and abundance of anaerobic ammonium-oxidizing (anammox) bacteria was investigated in continental shelf and slope sediments (300-3000 m water depth) off northwest Africa in a combined approach applying quantitative polymerase chain reaction (q-PCR) analysis of anammox-specific 16S rRNA genes and anammox-specific ladderane biomarker lipids. We used the presence of an intact ladderane monoether lipid with a phosphocholine (PC) headgroup as a direct indicator for living anammox bacteria and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane lipids, both intact and core lipids, in agreement with the presence of anammoxspecific 16S rRNA gene copies, indicating that anammox occurs at all sites. Concentrations of ladderane core lipids in core top sediments varied between 0.3 and 97 ng g**-1 sediment, with the highest concentrations detected at the sites located on the shelf at shallower water depths between 300 and 500 m. In contrast, the C20 [3]-ladderane monoether-PC lipid was most abundant in a core top sediment from 1500 m water depth. Both anammox-specific 16S rRNA gene copy numbers and the concentration of the C20 [3]-ladderane monoether-PC lipid increased downcore in sediments located at greater water depths, showing highest concentrations of 1.2 x 10**8 copies g**-1 sediment and 30 pg g**-1 sediment, respectively, at the deepest station of 3000 m water depth. This suggests that the relative abundance of anammox bacteria is higher in sediments at intermediate to deep water depths where carbon mineralization rates are lower but where anammox is probably more important than denitrification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoplankton composition and biomass was investigated across the southern Indian Ocean. Phytoplankton composition was determined from pigment analysis with subsequent calculations of group contributions to total chlorophyll a (Chl a) using CHEMTAX and, in addition, by examination in the microscope. The different plankton communities detected reflected the different water masses along a transect from Cape Town, South Africa, to Broome, Australia. The first station was influenced by the Agulhas Current with a very deep mixed surface layer. Based on pigment analysis this station was dominated by haptophytes, pelagophytes, cyanobacteria, and prasinophytes. Sub-Antarctic waters of the Southern Ocean were encountered at the next station, where new nutrients were intruded to the surface layer and the total Chl a concentration reached high concentrations of 1.7 µg Chl a/L with increased proportions of diatoms and dinoflagellates. The third station was also influenced by Southern Ocean waters, but located in a transition area on the boundary to subtropical water. Prochlorophytes appeared in the samples and Chl a was low, i.e., 0.3 µg/L in the surface with prevalence of haptophytes, pelagophytes, and cyanobacteria. The next two stations were located in the subtropical gyre with little mixing and general oligotrophic conditions where prochlorophytes, haptophytes and pelagophytes dominated. The last two stations were located in tropical waters influenced by down-welling of the Leeuwin Current and particularly prochlorophytes dominated at these two stations, but also pelagophytes, haptophytes and cyanobacteria were abundant. Haptophytes Type 6 (sensu Zapata et al., 2004), most likely Emiliania huxleyi, and pelagophytes were the dominating eucaryotes in the southern Indian Ocean. Prochlorophytes dominated in the subtrophic and oligotrophic eastern Indian Ocean where Chl a was low, i.e., 0.043-0.086 µg total Chl a/L in the surface, and up to 0.4 µg Chl a/L at deep Chl a maximum. From the pigment analyses it was found that the dinoflagellates of unknown trophy enumerated in the microscope at the oligotrophic stations were possibly heterotrophic or mixotrophic. Presence of zeaxanthin containing heterotrophic bacteria may have increased the abundance of cyanobacteria determined by CHEMTAX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new nitrogen isotope data from the water column and surface sediments for paleo-proxy validation collected along the Peruvian and Ecuadorian margins between 1°N and 18°S. Productivity proxies in the bulk sediment (organic carbon, total nitrogen, biogenic opal, C37 alkenone concentrations) and 15N/14N ratios were measured at more than 80 locations within and outside the present-day Peruvian oxygen minimum zone (OMZ). Microbial N-loss to N2 in subsurface waters under O2 deficient conditions leaves a characteristic 15N-enriched signal in underlying sediments. We find that phytoplankton nutrient uptake in surface waters within the high nutrient, low chlorophyll (HNLC) regions of the Peruvian upwelling system influences the sedimentary signal as well. How the d15Nsed signal is linked to these processes is studied by comparing core-top values to the 15N/14N of nitrate and nitrite (d15N[NOx]) in the upper 200 m of the water column. Between 1°N and 10°S, subsurface O2 is still high enough to suppress N-loss keeping d15NNOx values relatively low in the subsurface waters. However d15N[NOx] values increase toward the surface due to partial nitrate utilization in the photic zone in this HNLC portion of the system. d15N[sed] is consistently lower than the isotopic signature of upwelled [NO3]-, likely due to the corresponding production of 15N depleted organic matter. Between 10°S and 15°S, the current position of perennial upwelling cells, HNLC conditions are relaxed and biological production and near-surface phytoplankton uptake of upwelled [NO3]- are most intense. In addition, subsurface O2 concentration decreases to levels sufficient for N-loss by denitrification and/or anammox, resulting in elevated subsurface d15N[NOx] values in the source waters for coastal upwelling. Increasingly higher production southward is reflected by various productivity proxies in the sediments, while the north-south gradient towards stronger surface [NO3]- utilization and subsurface N-loss is reflected in the surface sediment 15N/14N ratios. South of 10°S, d15N[sed] is lower than maximum water column d15N[NOx] values most likely because only a portion of the upwelled water originates from the depths where highest d15N[NOx] values prevail. Though the enrichment of d15N[NOx] in the subsurface waters is unambiguously reflected in d15N[sed] values, the magnitude of d15N[sed] enrichment depends on both the depth of upwelled waters and high subsurface d15N[NOx] values produce by N-loss. Overall, the degree of N-loss influencing subsurface d15N[NOx] values, the depth origin of upwelled waters, and the degree of near-surface nitrate utilization under HNLC conditions should be considered for the interpretation of paleo d15N[sed] records from the Peruvian oxygen minimum zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both the biomass of autotrophic dinoflagellates and its contribution to total chlorophyll were found to increase significantly with seawater temperature and the level of stratification in southern Patagonian waters during spring and winter. The highest peak of biomass corresponded to a single species, Prorocentrum minimum (Pavillard) Schiller, and was detected in middle shelf waters, coinciding with the primary productivity and CO2 uptake maxima reported for the area under spring conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between the vertical flux of microplankton and its standing stock in the upper ocean was determined in the subtropical (33°N, 21°W) and tropical (18°N, 30°W) northeast Atlantic in spring 1989 as part of the North Atlantic Bloom Experiment. In the subtropical area specific sedimentation rates at all depths were low (0.1% of standing stock) and 10-20% of settled particulate organic carbon (POC) was viable diatoms. The high contribution of viable diatoms, their empty frustules and tintinnid loricae to settled material characterized a system in transition between a diatom bloom sedimentation event and an oligotrophic summer situation. In the tropical area specific sedimentation rates were similar, but absolute rates (3 mg C m?2 day?1) were only about a third of those in the subtropical area. Microplankton carbon contributed only 2-6% to POC. Hard parts of heterotrophs found embedded in amorphous detrital matter suggest that particles had passed through a complex food web prior to sedimentation. Coccolithophorids, not diatoms dominated the autotrophic fraction in traps, and a shift in the composition of autotrophs may indicate a perturbation of the oligotrophic system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold-water corals (CWC) are widely distributed around the world forming extensive reefs at par with tropical coral reefs. They are hotspots of biodiversity and organic matter processing in the world's deep oceans. Living in the dark they lack photosynthetic symbionts and are therefore considered to depend entirely on the limited flux of organic resources from the surface ocean. While symbiotic relations in tropical corals are known to be key to their survival in oligotrophic conditions, the full metabolic capacity of CWC has yet to be revealed. Here we report isotope tracer evidence for efficient nitrogen recycling, including nitrogen assimilation, regeneration, nitrification and denitrification. Moreover, we also discovered chemoautotrophy and nitrogen fixation in CWC and transfer of fixed nitrogen and inorganic carbon into bulk coral tissue and tissue compounds (fatty acids and amino acids). This unrecognized yet versatile metabolic machinery of CWC conserves precious limiting resources and provides access to new nitrogen and organic carbon resources that may be essential for CWC to survive in the resource-depleted dark ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of ocean warming and acidification was investigated on a natural plankton assemblage from an oligotrophic area, the bay of Villefranche (NW Mediterranean Sea). The assemblage was sampled in March 2012 and exposed to the following four treatments for 12 days: control ( 360 µatm, 14°C), elevated pCO2 ( 610 µatm, 14°C), elevated temperature ( 410 µatm, 17°C), and elevated pCO2 and temperature ( 690 µatm, 17°C). Nutrients were already depleted at the beginning of the experiment and the concentrations of chlorophyll a (chl a), heterotrophic prokaryotes and viruses decreased, under all treatments, throughout the experiment. There were no statistically significant effects of ocean warming and acidification, whether in isolation or combined, on the concentrations of nutrients, particulate organic matter, chl a and most of the photosynthetic pigments. Furthermore, 13C labelling showed that the carbon transfer rates from 13C-sodium bicarbonate into particulate organic carbon were not affected by seawater warming nor acidification. Rates of gross primary production followed the general decreasing trend of chl a concentrations and were significantly higher under elevated temperature, an effect exacerbated when combined to elevated pCO2 level. In contrast to the other algal groups, the picophytoplankton population (cyanobacteria, mostly Synechococcus) increased throughout the experiment and was more abundant in the warmer treatment though to a lesser extent when combined to high pCO2 level. These results suggest that under nutrient-depleted conditions in the Mediterranean Sea, ocean acidification has a very limited impact on the plankton community and that small species will benefit from warming with a potential decrease of the export and energy transfer to higher trophic levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.3, significantly reduced SCOC on average by 60% and benthic nitrification rates on average by 94% in both sediment types in February (pre-bloom period), but not in April (bloom period). No changes in macrofauna functional community (density, structural and functional diversity) were observed between ambient and acidified conditions, suggesting that changes in benthic biogeochemical cycling were predominantly mediated by changes in the activity of the microbial community during the short-term incubations (14 days), rather than by changes in engineering effects of bioturbating and bio-irrigating macrofauna. As benthic nitrification makes up the gross of ocean nitrification, a slowdown of this nitrogen cycling pathway in both permeable and fine sediments in winter, could therefore have global impacts on coupled nitrification-denitrification and hence eventually on pelagic nutrient availability.