500 resultados para 718


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The described studies were carried out in the eastern part of the sea during the end of the summer seasonal succession from September 1 to October 12, 1997. Concentration of chlorophyll a in the surface layer varied from 0.09 to 1.24 mg/m**3; it tended to increase in the southern regions (<74°N). Primary production in the water column (P_p) varied from 24 to 214 mg C/m**2/day and was on average 91 mg C/m**2/day. The low level of P_p seems to result from combination of physical and chemical environmental factors unfavorable for photosynthesis (e.g. deficiency of nutrients and low values of insolation and temperature) and intensive grazing of phytoplankton by zooplankton. The lower boundary of the photosynthetic layer in open waters was located at depth 60-75 m; irradiance there was 0.1-0.5% of incident irradiance. In deep-water regions (>200 m) the subsurface maximum of chlorophyll occurred in the layer at 20-40 m; usually this maximum resulted in formation of additional maxima of primary production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proto-kerogens were isolated, by extraction and HF/HC1 treatment, from core samples of Holocene sediments of the Cariaco Trench, with interpolated ages of 900, 2850 and 6000 years, and examined via a combination of microscopic, spectroscopic and pyrolytic methods. It appears that these proto-kerogens were chiefly formed from phytoplanktonic components via the degradation-recondensation pathway. The natural sulfurisation pathway only afforded a minor contribution, in spite of the conditions prevailing in the water column and sediments that correspond to those generally considered as especially favourable for the formation of sulfurised organic matter. Proto-kerogen formation via sulfurisation, i.e. the endpoint of the continuum leading to insoluble high molecular weight structures cross-linked by sulfur and resistant to acid hydrolysis, is therefore a rather slow process under these conditions. However, the contribution of sulfurised moieties to the total proto-kerogen substantially increased with depth due to continuous sulfurisation in the time/depth interval, whereas formation through degradation-recondensation is almost complete for the 900 years old sample onwards. Proto-kerogen formation via carbohydrate sulfurisation is faster than lipid sulfurisation and only sulfurised carbohydrates were detected in the shallowest sample. In contrast, sulfurised lipids occur in the other two proto-kerogens. Moreover, their contribution relative to sulfurised carbohydrates increases with depth, probably due to the higher resistance of lipids to mineralisation compared to carbohydrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.