249 resultados para 6-BIS(IMINO)PYRIDYL IRON
Resumo:
Concentrations of dissolved (<0.2 µm) Fe (DFe) in the Arctic shelf seas and in the surface waters of the central Arctic Ocean are presented. In the Barents and Kara seas, near-surface DFe minima indicate depletion of DFe by phytoplankton growth. Below the surface, lower DFe concentrations in the Kara Sea (~0.4-0.6 nM) than in the Barents Sea (~0.6-0.8 nM) likely reflect scavenging removal or biological depletion of DFe. Very high DFe concentrations (>10 nM) in the bottom waters of the Laptev Sea shelf may be attributed to either sediment resuspension, sinking of brine or regeneration of DFe in the lower layers. A significant correlation (R2 = 0.60) between salinity and DFe is observed. Using d18O, salinity, nutrients and total alkalinity data, the main source for the high (>2 nM) DFe concentrations in the Amundsen and Makarov Basins is identified as (Eurasian) river water, transported with the Transpolar Drift (TPD). On the North American side of the TPD, the DFe concentrations are low (<0.8 nM) and variations are determined by the effects of sea-ice meltwater, biological depletion and remineralization and scavenging in halocline waters from the shelf. This distribution pattern of DFe is also supported by the ratio between unfiltered and dissolved Fe (high (>4) above the shelf and low (<4) off the shelf).
Resumo:
Total dissolvable iron (TDFe), particulate iron (PFe) and hydrogen peroxide (H2O2 measurements were performed along a N-S transect in the upper 250 m in the Southern Ocean (62°00E/66°42S - 49°00S, ANTARES II cruise, February 1994). TDFe was organically extracted (APDC/DDDC-chloroform) and analysed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS), PFe was analysed by GFAAS following a strong mixed-acid leach, and H2O2 was analysed on board by fluorometry. The respective detection limits are equal to 0.13 nmol/kg, 0.02 nmol/kg, and 3.0 nmol/kg. TDFe concentrations vary from 0.4 to 6.2 nmol/kg and profiles are not completely depleted in the surface. PFe concentrations vary from 0.02 to 0.2 nmol/kg. Iron/carbon (Fe/C) uptake ratios for phytoplankton were calculated either from seawater or particle measurements. They are variable along the transect but are consistent when they could be compared. All the observed ratios are within the range of values proposed for the Fe/C uptake ratios by phytoplankton. Using our uptake ratio calculated in the Permanent Open Ocean Zone (4 x 10**?6 mol/mol), we estimate that the primary production which can be supported by the iron input flux into the surface waters is two times higher than the measured primary production in the same area. In the surface waters, H2O2 concentrations vary from 5.0 to 19.7 nmol/kg. Such low concentrations are due to strong vertical mixing, low dissolved organic matter concentrations and the latitude of the site.
Resumo:
The Ross Sea polynya is among the most productive regions in the Southern Ocean and may constitute a significant oceanic CO2 sink. Based on results from several field studies, this region has been considered seasonally iron limited, whereby a "winter reserve" of dissolved iron (dFe) is progressively depleted during the growing season to low concentrations (~0.1 nM) that limit phytoplankton growth in the austral summer (December-February). Here we report new iron data for the Ross Sea polynya during austral summer 2005-2006 (27 December-22 January) and the following austral spring 2006 (16 November-3 December). The summer 2005-2006 data show generally low dFe concentrations in polynya surface waters (0.10 ± 0.05 nM in upper 40 m, n = 175), consistent with previous observations. Surprisingly, our spring 2006 data reveal similar low surface dFe concentrations in the polynya (0.06 ± 0.04 nM in upper 40 m, n = 69), in association with relatively high rates of primary production (~170-260 mmol C/m**2/d). These results indicate that the winter reserve dFe may be consumed relatively early in the growing season, such that polynya surface waters can become "iron limited" as early as November; i.e., the seasonal depletion of dFe is not necessarily gradual. Satellite observations reveal significant biomass accumulation in the polynya during summer 2006-2007, implying significant sources of "new" dFe to surface waters during this period. Possible sources of this new dFe include episodic vertical exchange, lateral advection, aerosol input, and reductive dissolution of particulate iron.
Resumo:
Manganese-iron accumulates in the Kiel Bay were investigated with regard to their occurence, chemical composition and formation. Three morphologically different types were identified: a) growth on mussels, b) spherical nodules (ca. 1-3 cm) and c) disshaped symetrical and asymetrical nodules (up to 10 cm). Average values from 110 accumulates representing the three types were: Mn 29.3%, Fe 10.0%, Co 77 ppm, Ni 97 ppm, Cu 21 ppm and Zn 340 ppm. Accumulates on mussels showed the highest trace metal concentrations. A growth rate of ca. 0.6 mm/yr for type (a) was estimated. Heavy metal concentrations were determined in ca. 60 sediment and 30 pore water samples, and in 110 Baltic sea water samples. During certain periods, large increases in Mn values (up to 400 (µg/l) were found in the deeper waters. These concentrations develop during periods of strong stagnant conditions in the sediments where dissolution of Mn oxides, and diffusion mobilizes the Mn into the overlying waters. The manganese is then reprecipitated close to the boundary of the O2-enriched surface waters. This critical O2-concentration was found to be 40% saturation. In the Kiel Bay, Mn-Fe-accumulates are found in a zone which marks the upper limit sometimes reached by the deep waters of lower O2-concentration. Additionally, the availability of larger particles (especially stones or mussels) on the sediment surface is necessary. These conditions are met in the Kiel Bay in a water depth of 20-28 m at several places.
(Table 6-2) Vertical fluxes of chemical elements above and within the Broken Spur hydrothermal field