205 resultados para 191-1179D


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As reported by Shipboard Scientific Party (2001b, doi:10.2973/odp.proc.ir.191.104.2001) in the Site 1179 chapter of the Initial Reports volume, Leg 191 Site 1179 is located on abyssal seafloor northwest of Shatsky Rise, ~1650 km east of Japan. This part of the Pacific plate was formed during the Early Cretaceous, as shown by northeast-trending M-series magnetic lineations that become younger toward the northwest (Larson and Chase, 1972, doi:10.1130/0016-7606(1972)83[3627:LMEOTW]2.0.CO;2; Sager et al., 1988, doi:10.1029/JB093iB10p11753; Nakanishi et al., 1989, doi:10.1029/1999JB900002). The site is situated on magnetic Anomaly M8 (Nakanishi et al., 1999, doi:10.1029/1999JB900002), corresponding to an age of ~129 Ma and the Hauterivian stage of the Early Cretaceous (Gradstein et al., 1994, doi:10.1029/94JB01889; 1995). The sediments recovered at Site 1179 are split into four lithostratigraphic units based on composition and color (Shipboard Scientific Party, 2001b, doi:10.2973/odp.proc.ir.191.104.2001). Unit I (0-221.52 meters below seafloor [mbsf]) is a dominantly olive-gray clay- and radiolarian-bearing diatom ooze. Unit II (221.52-246.0 mbsf) is a yellowish brown to light brown clay-rich and diatom-bearing radiolarian ooze. Unit III (246.0-283.53 mbsf) is composed of brown pelagic clay. Unit IV (283.53-377.15 mbsf) is composed of chert and some porcellanite; any softer sediments present were washed out of the core barrel by the fluid circulating during the coring process.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the objectives of drilling at Site 1179 was to search for microbes or biochemical evidence of microbial activity as part of the ongoing exploration of the depth and extent of the deep biosphere. The existence of living microbes has not been confirmed, but the chemistry of pore waters from the site, such as sulfate and ammonium profiles, is consistent with sulfate reduction and nitrification by anaerobic bacteria. However, chemical profiles are affected by the movement of molecules and ions through porous sediments by diffusion and advection. Permeability is thus an important consideration in the interpretation of pore water chemistry profiles. Moreover, diatomaceous sediments have some unique and, as yet, poorly understood physical properties. The purpose of this research is to measure hydraulic conductivity (permeability) in a suite of sediment samples from Ocean Drilling Program Site 1179 by the transient-pulse method. The sample set consists of four diatom ooze samples from Unit I, one radiolarian ooze sample from Unit II, and one pelagic clay sample from Unit III. The permeability of the clay is 1.92 µd, whereas the permeabilities of the overlying radiolarian and diatom oozes range from 289 to 1604 µd. Among these samples, permeability increases with porosity and grain size, in keeping with the results of previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment samples ranging from 0.05 to 278 m below sea floor (mbsf) at a Northwest Pacific deep-water (5564 mbsl) site (ODP Leg 191, Site 1179) were analyzed for phospholipid fatty acids (PLFAs). Total PLFA concentrations decreased by a factor of three over the first meter of sediment and then decreased at a slower rate to approximately 30 mbsf. The sharp decrease over the first meter corresponds to the depth of nitrate and Mn(IV) reduction as indicated by pore water chemistry. PLFA-based cell numbers at site 1179 had a similar depth profile as that for Acridine orange direct cell counts previously made on ODP site 1149 sediments which have a similar water depth and lithology. The mole percentage of straight chain saturated PLFAs increases with depth, with a large shift between the 0.95 and 3.95 mbsf samples. PLFA stable carbon isotope ratios were determined for sediments from 0.05 to 4.53 mbsf and showed a general trend toward more depleted d13C values with depth. Both of these observations may indicate a shift in the bacterial community with depth across the different redox zones inferred from pore water chemistry data. The PLFA 10me16:0, which has been attributed to the bacterial genera Desulfobacter in many marine sediments, showed the greatest isotopic depletion, decreasing from -20 to -35 per mil over the first meter of sediment. Pore water chemistry suggested that sulfate reduction was absent or minimal over this same sediment interval. However, 10me16:0 has been shown to be produced by recently discovered anaerobic ammonium oxidizing (anammox) bacteria which are known chemoautotrophs. The increasing depletion in d13C of 10me16:0 with the unusually lower concentration of ammonium and linear decrease of nitrate concentration is consistent with a scenario of anammox bacteria mediating the oxidation of ammonium via nitrite, an intermediate of nitrate reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the use of deep-sea imagery considerably increased during the last decades, reports on nekton falls to the deep seafloor are very scarce. Whereas there are a few reports describing the finding of whale carcasses in the deep north-eastern and south-eastern Pacific, descriptions of invertebrate or vertebrate food-falls at centimetre to metre scale are extremely rare. After 4 years of extensive work at a deep-sea long-term station in northern polar regions (AWI-"Hausgarten"), including large-scale visual observations with various camera systems covering some 10 000 m2 of seafloor at water depths between 1250 and 5600 m, this paper describes the first observation of a fish carcass at about 1280 m water depth, west off Svålbard. The fish skeleton had a total length of 36 cm and an approximated biomass of 0.5 kg wet weight. On the basis of in situ experiments, we estimated a very short residence time of this particular carcass of about 7 h at the bottom. The fast response of the motile deep-sea scavenger community to such events and the rapid utilisation of this kind of organic carbon supply might partly explain the extreme rarity of such an observation.