203 resultados para water solubility index


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of essential elements closely related to each other are involved in the Earth's climatic system. The temporal and spatial distribution of insolation determines wind patterns and the ocean's thermohaline pump. In turn, these last two are directly linked to the extension and retreat of marine and continental ice and to the chemistry of the atmosphere and the ocean. The variability of these elements may trigger, amplify, sustain or globalize rapid climatic changes. Paleoclimatic oscillations have been identified in this thesis by using fossil organic compounds synthesized by marine and terrestrial flora. High sedimentation rate deposits at the Barents and the Iberian peninsula continental margins were chosen in order to estimate the climatic changes on centennial time resolution. At the Barents margin, the sediment recovered was up to 15,000 years old (unit ''a'', from latin ''annos'') (M23258; west of the Bjørnøya island). At the Iberian margin, the sediment cores studied covered a wide range of time spans: up to 115,000 a (MD99-2343; north of the Minorca island), up to 250,000 a (ODP-977A; Alboran basin) and up to 420,000 a (MD01-2442, MD01-2443, MD01-2444, MD01-2445; close to the Tagus abyssal plain). At the northern site, inputs containing marine, continental and ancient reworked organic matter provided a detailed reconstruction of climate history at the time of the final retreat of the Barents ice sheet. At the western Barents continental slope, warm climatic conditions were observed during the early Holocene (~from 8,650 a to 5,240 a ago); in contrast, an apparent long-term cooling trend occurred in the late Holocene (~from 5,240 a to 760 a ago), in consistence with other paleoarchives from northern and southern European latitudes. The Iberian margin sites, which were never covered with large ice sheets, preserved exceptionally complete sequences of rapid events during ice ages hitherto not studied in such great detail: during the last glacial (~from 70,900 a to 11,800 a ago), the second glacial (~from 189,300 a to 127,500 a ago), the third ice age (~from 278,600 a to 244,800 a ago) and the fourth (~from 376,300 a to 337,500 a ago). In this thesis, crucial research questions were brought up concerning the severity of different glacial periods, the intensity and rates of the recorded oscillations and the long distance connections related to rapid climate change. The data obtained provide a sound basis to further research on the mechanisms involved in this rapid climate variability. An essential point of the research was the evidence that, over the past 420,000 a, at the whole Iberian margin, warm and stable long periods similar to the Holocene always ended abruptly in few centuries after a gradual deterioration of climate conditions. The detailed estimate of past climate variability provides clues to the natural end of the present warm period. Returning to an ice age in European lands would be exacerbated by a number of factors: a lack of differential solar heating between northern and southern north Atlantic latitudes, enhanced evaporation at low latitudes, and an increase in snowfall or iceberg discharges at northern regions. It must be emphasized that all climatic oscillations observed in this thesis were caused by forces of nature, i.e. the last two centuries were not taken into consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Atlantic is regarded as a huge carbonate depocenter due to an on average deep calcite lysocline. However, calculations and models that attribute the calcite lysocline to the critical undersaturation depth (hydrographic or chemical lysocline) and not to the depth at which significant calcium carbonate dissolution is observed (sedimentary calcite lysocline) strongly overestimate the preservation potential of calcareous deep-sea sediments. Significant calcium carbonate dissolution is expected to begin firstly below 5000 m in the deep Guinea and Angola Basin and below 4400 m in the Cape Basin. Our study that is based on different calcium carbonate dissolution stages of the planktic foraminifera Globigerina bulloides clearly shows that it starts between 400 and 1600 m shallower depending on the different hydrographic settings of the South Atlantic Ocean. In particular, coastal areas are severely affected by increased supply of organic matter and the resultant production of metabolic CO2 which seems to create microenvironments favorable for dissolution of calcite well above the hydrographic lysocline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uk'37 sea-surface temperature (SST) estimates obtained at ~2.5-k.y. resolution from Ocean Drilling Program Site 1020 show glacial-interglacial cyclicity with an amplitude of 7°-10°C over the last 780 k.y. This record shows a similar pattern of variability to another alkenone-based SST record obtained previously from the Santa Barbara Basin. Both records show that oxygen isotope Stage (OIS) 5.5 was warmer by ~3°C relative to the present and that glacial Uk'37 temperatures warm in advance of deglaciation, as inferred from benthic d18O records. The alkenone-based SST record at Site 1020 is longer than previously published work along the California margin. We show that warmer than present interglacial stages have occurred frequently during the last 800 k.y. Alkenone concentrations, a proxy for coccolithophorid productivity, indicate that sedimentary marine organic carbon content has also varied significantly over this interval, with higher contents during interglacial periods. A baseline shift to warmer SST and greater alkenone content occurs before OIS 13. We compare our results with those from previous multiproxy studies in this region and conclude that SST has increased by ~5°C since the last glacial period (21 ka). Our data show that maximum alkenone SSTs occur simultaneously with minimum ice volume at Site 1020, which is consistent with data from farther south along the margin. The presence of sea ice in the glacial northeast Pacific, the extent of which is inferred from locations of ice-rafted debris, provides further support for our notion of cold surface water within the northern California Current system, averaging 7°-8°C cooler during peak glacial conditions. The cooling of surface water during glacial stages most likely did not result from enhanced upwelling because alkenone concentrations and terrestrial redwood pollen assemblages are consistently lower during glacial periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stable hydrogen isotope composition of lipid biomarkers, such as alkenones, is a promising new tool for the improvement of palaeosalinity reconstructions. Laboratory studies confirmed the correlation between lipid biomarker dD composition (dDLipid), water dD composition (dDH2O) and salinity; yet there is limited insight into the applicability of this proxy in oceanic environments. To fill this gap, we test the use of the dD composition of alkenones (dDC37) and palmitic acid (dDPA) as salinity proxies using samples of surface suspended material along the distinct salinity gradient induced by the Amazon Plume. Our results indicate a positive correlation between salinity and dDH2O, while the relationship between dDH2O and dDLipid is more complex: dDPAM correlates strongly with dDH2O (r2 = 0.81) and shows a salinity-dependent isotopic fractionation factor. dDC37 only correlates with dDH2O in a small number (n = 8) of samples with alkenone concentrations > 10 ng L**-1, while there is no correlation if all samples are taken into account. These findings are mirrored by alkenone-based temperature reconstructions, which are inaccurate for samples with low alkenone concentrations. Deviations in dDC37 and temperature are likely to be caused by limited haptophyte algae growth due to low salinity and light limitation imposed by the Amazon Plume. Our study confirms the applicability of dDLipid as a salinity proxy in oceanic environments. But it raises a note of caution concerning regions where low alkenone production can be expected due to low salinity and light limitation, for instance, under strong riverine discharge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have preliminarily generated the downcore records of total organic carbon (TOC) content, total alkenone concentration, alkenone unsaturation index, and the estimated sea-surface temperature (SST) in the northern three sites (Sites 1175, 1176, and 1178) of the Muroto Transect, Nankai Trough. The TOC content will be used for the evaluation of the burial of organic matter, which plays a role in the generation of natural gas and the formation of gas hydrate in this region. The downcore records of alkenone SST will benefit studies for the paleoceanography of the northwestern Pacific. Because those sites are located in the main path of the Kuroshio Current, the records provide the temperature change of the Kuroshio water, which is an end-member water mass in the northwestern Pacific.