201 resultados para name to Wielkopolska


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing instruments are key players to map land surface temperature (LST) at large temporal and spatial scales. In this paper, we present how we combine passive microwave and thermal infrared data to estimate LST during summer snow-free periods over northern high latitudes. The methodology is based on the SSM/I-SSMIS 37 GHz measurements at both vertical and horizontal polarizations on a 25 km × 25 km grid size. LST is retrieved from brightness temperatures introducing an empirical linear relationship between emissivities at both polarizations as described in Royer and Poirier (2010). This relationship is calibrated at pixel scale, using cloud-free independent LST data from MODIS instruments. The SSM/I-SSMIS and MODIS data are synchronized by fitting a diurnal cycle model built on skin temperature reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The resulting temperature dataset is provided at 25 km scale and at an hourly time step during the ten-year analysis period (2000-2011). This new product was locally evaluated at five experimental sites of the EU-PAGE21 project against air temperature measurements and meteorological model reanalysis, and compared to the MODIS LST product at both local and circumpolar scale. The results giving a mean RMSE of the order of 2.2 K demonstrate the usefulness of the microwave product, which is unaffected by clouds as opposed to thermal infrared products and offers a better resolution compared to model reanalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dataset contains continuous time series of land surface temperature (LST) at spatial resolution of 300m around the 12 experimental sites of the PAGE21 project (grant agreement number 282700, funded by the EC seventh Framework Program theme FP7-ENV-2011). This dataset was produced from hourly LST time series at 25km scale, retrieved from SSM/I data (André et al., 2015, doi:10.1016/j.rse.2015.01.028) and downscaled to 300m using a dynamic model and a particle smoothing approach. This methodology is based on two main assumptions. First, LST spatial variability is mostly explained by land cover and soil hydric state. Second, LST is unique for a land cover class within the low resolution pixel. Given these hypotheses, this variable can be estimated using a land cover map and a physically based land surface model constrained with observations using a data assimilation process. This methodology described in Mechri et al. (2014, doi:10.1002/2013JD020354) was applied to the ORCHIDEE land surface model (Krinner et al., 2005, doi:10.1029/2003GB002199) to estimate prior values of each land cover class provided by the ESA CCI-Land Cover product (Bontemps et al., 2013) at 300m resolution . The assimilation process (particle smoother) consists in simulating ensemble of LST time series for each land cover class and for a large number of parameter sets. For each parameter set, the resulting temperatures are aggregated considering the grid fraction of each land cover and compared to the coarse observations. Miniminizing the distance between the aggregated model solutions and the observations allow us to select the simulated LST and the corresponding parameter sets which fit the observations most closely. The retained parameter sets are then duplicated and randomly perturbed before simulating the next time window. At the end, the most likely LST of each land cover class are estimated and used to reconstruct LST maps at 300m resolution using ESA CCI-Land Cover. The resulting temperature maps on which ice pixels were masked, are provided at daily time step during the nine-year analysis period (2000-2009).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antarctic ecosystems are at risk from the introduction of invasive species. The first step in the process of invasion is the transportation of alien species to Antarctic in a viable state. However, the effect of long-distance human-mediated dispersal, over different time-scales, on propagule viability is not well known. We assessed the viability of Poa trivialis seeds transported to Antarctica from the UK, South Africa and Australia by ship or by ship and aircraft. Following transportation to the Antarctic Treaty area, no reduction in seed viability was found, despite journey times lasting up to 284 days and seeds experiencing temperatures as low as -1.5°C. This work confirms that human-mediated transport may overcome the dispersal barrier for some propagules, and highlights the need for effective pre-departure biosecurity measures.