994 resultados para delta 18O, opal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The delta18O values of planktonic foraminifera increased in the Caribbean by about 0.5? relative to the equatorial East Pacific values between 4.6 and 4.2 Ma as a consequence of the closure of the Central American Gateway (CAG). This increase in delta18O can be interpreted either as an increase in Caribbean sea surface (mixed layer) salinity (SSS) or as a decrease in sea surface temperatures (SST). This problem represents an ideal situation to apply the recently developed paleotemperature proxy delta44/40Ca together with Mg/Ca and d18O on the planktic foraminifer Globigerinoides sacculifer from ODP Site 999. Although differences in absolute temperature calibration of delta44/40Ca and Mg/Ca exist, the general pattern is similar indicating a SST decrease of about 2-3 8C between 4.4 and 4.3 Ma followed by an increase in the same order of magnitude between 4.3 and 4.0 Ma. Correcting the delta18O record for this temperature change and assuming that changes in global ice volume are negligible, the salinity-induced planktonic delta18O signal decreased by about 0.4? between 4.4 and 4.3 Ma and increased by about 0.9? between 4.3 and 4.0 Ma in the Caribbean. The observed temperature and salinity trends are interpreted to reflect the restricted exchange of surface water between the Caribbean and the Pacific in response to the shoaling of the Panamanian Seaway, possibly accompanied by a southward shift of the Intertropical Convergence Zone (ITCZ) between 4.4 and 4.3 Ma. Differences in Mg/Ca- and delta44/40Ca-derived temperatures can be reconciled by corrections for secular variations of the marine Mg/Ca[sw] and delta44/40Ca, a salinity effect on the Mg/Ca ratio and a constant temperature offset of ~2.5 °C between both SST proxy calibrations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water extracted from opal-CT ("porcellanite", "cristobalite"), granular microcrystalline quartz (chert), and pure fibrous quartz (chalcedony) in cherts from the JOIDES Deep Sea Drilling Project is 56? to 87? depleted in deuterium relative to the water in which the silica formed. This large fractionation is similar in magnitude and sign to that observed for hydroxyl in clay minerals and suggests that water extracted from these forms of silica has been derived from hydroxyl groups within the silica. Delta18O-values for opal-CT at sites 61, 64, 70B and 149 vary from 34.3? to 37.2? and show no direct correlation with depth of burial. Granular microcrystaUine quartz in these cores is 0.5 ? depleted in 18O relative to coexisting opal-CT at sediment depths of 100 m and the depletion increases to 2? for sediments buried below 384 m. These relationships suggest that opal-CT forms before significant burial while granular microcrystalline quartz forms during deeper burial at warmer temperatures. The temperature at which opal-CT forms is thus probably approximately equal to the temperature of the overlying bottom water. Isotopic temperatures deduced for opal-CT formation are preliminary and very approximate, but yield Eocene deep-water temperatures of 5-13°C, and 6°C for the upper Cretaceous sample. Pure euhedral quartz crystals lining a cavity in opal-CT at 388 m in core 8-70B-4-CC have a ~delta18O value of +29.8? and probably formed near maximum burial. The isotopic temperature is approximately 32 ° C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seventeen whole-rock samples, generally taken at 25-50 m intervals from 5 to 560 m sub-basement in Hole 504B, drilled in 6.2 m.y. old crust, were analysed for 87Sr/86Sr ratios, Sr and Rb concentrations, and 18O/16O ratios. Sr isotope ratios for 8 samples from the upper 260 m of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the 330-560 m interval, 5 samples have a restricted range of 0.70255-0.70279, with a mean of 0.70266, the average value for fresh mid-ocean ridge basalts (MORB). In the 260-330 m interval, approximately intermediate Sr isotopic ratios are found. Delta18O values (?) range from 6.4 to 7.8 in the upper 260 m, 6.2-6.4 in the 270-320 m interval, and 5.8-6.2 in the 320-560 m interval. The values in the upper 260 m are typical for basalts which have undergone low-temperature seawater alteration, whereas the values for the 320-560 m interval correspond to MORB which have experienced essentially no oxygen isotopic alteration. The higher 87Sr/86Sr and 18O/16O ratios in the upper part of the hole can be interpreted as the result of a greater overall water/rock ratio in the upper part of the Hole 504B crust than in the lower part. Interaction of basalt with seawater (87Sr/86Sr = 0.7091) increased basalt 87Sr/86Sr ratios and produced smectitic alteration products which raised whole-rock delta18O values. Seawater circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below about 230 m sub-basement. These flows may have helped to seal off lower basalts from through-flowing seawater.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (~55 to ~45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The d18O values of the Eocene samples ranged from -6.84 per mil to -2.96 per mil Vienna Peedee belemnite, with a mean value of -4.89 per mil, compared to 2.77 per mil for a Miocene sample in the overlying section. An average salinity of 21 to 25 per mil was calculated for the Eocene Arctic, compared to 35 per mil for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ~48.7 Ma, and a third previously unidentified event at ~47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive d13C excursion was observed, indicating unusually high productivity in the surface waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Benthic foraminifer and delta13C data from Site 849, on the west flank of the East Pacific Rise (0°11 'N, 110°31'W; 3851 m), give relatively continuous records of deep Pacific Ocean stable isotope variations between 0 and 5 Ma. The mean sample spacing is 4 k.y. Most analyses are from Cibicides wuellerstorfi, but isotopic offsets relative to Uvigerina peregrina appear roughly constant. Because of its location west of the East Pacific Rise, Site 849 yields a suitable record of mean Pacific Ocean delta13C, which approximates a global oceanic signal. The ~100-k.y.-period climate cycle, which is prevalent in delta18O does not dominate the long-term delta13C record. For delta13C, variations in the ~400- and 41-k.y. periods are more important. Phase lags of delta13C relative to ice volume in the 41- and 23-k.y. bands are consistent with delta13C as a measure of organic biomass. A model-calculated exponential response time of 1-2 k.y. is appropriate for carbon stored in soils and shallow sediments responding to glacial-interglacial climate change. Oceanic delta13C leads ice volume slightly in the 100-k.y. band, and this suggests another process such as changes in continental weathering to modulate mean river delta13C at long periods. The delta13C record from Site 849 diverges from that of Site 677 in the Panama Basin mostly because of decay of 13C-depleted organic carbon in the relatively isolated Panama Basin. North Atlantic to Pacific delta13C differences calculated using published data from Sites 607 and 849 reveal variations in Pliocene deep water within the range of those of the late Quaternary. Maximum delta13C contrast between these sites, which presumably reflects maximum influx of high-delta13C northern source water into the deep North Atlantic Ocean, occurred between 1.3 and 2.1 Ma, well after the initiation of Northern Hemisphere glaciation. Export of high-delta13C North Atlantic Deep Water from the Atlantic to the circumpolar Antarctic, as recorded by published delta13C data from Subantarctic Site 704, appears unrelated to the North Atlantic-Pacific delta13C contrast. To account for this observation, we suggest that deep-water formation in the North Atlantic reflects northern source characteristics, whereas export of this water into the circumpolar Antarctic reflects Southern Hemisphere wind forcing. Neither process appears directly linked to ice-volume variations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mid-Pliocene was an episode of prolonged global warmth and strong North Atlantic thermohaline circulation, interrupted briefly at circa 3.30 Ma by a global cooling event corresponding to marine isotope stage (MIS) M2. Paleoceanographic changes in the eastern North Atlantic have been reconstructed between circa 3.35 and 3.24 Ma at Deep Sea Drilling Project Site 610 and Integrated Ocean Drilling Program Site 1308. Mg/Ca ratios and d18O from Globigerina bulloides are used to reconstruct the temperature and relative salinity of surface waters, and dinoflagellate cyst assemblages are used to assess variability in the North Atlantic Current (NAC). Our sea surface temperature data indicate warm waters at both sites before and after MIS M2 but a cooling of ~2-3°C during MIS M2. A dinoflagellate cyst assemblage overturn marked by a decline in Operculodinium centrocarpum reflects a southward shift or slowdown of the NAC between circa 3.330 and 3.283 Ma, reducing northward heat transport 23-35 ka before the global ice volume maximum of MIS M2. This will have established conditions that ultimately allowed the Greenland ice sheet to expand, leading to the global cooling event at MIS M2. Comparison with an ice-rafted debris record excludes fresh water input via icebergs in the northeast Atlantic as a cause of NAC decline. The mechanism causing the temporary disruption of the NAC may be related to a brief reopening of the Panamanian Gateway at about this time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and d18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.