505 resultados para clay microstructure
Resumo:
We combined longitudinal analyses of otolith microstructure and trace elemental composition in ~ age 1-2 Pacific bluefin tuna (PBT, n = 24) for inferring the arrival of individuals in the California Current Large Marine Ecosystem (CCLME). Element:Ca ratios in transverse otolith sections (9-12 rows, triplicate ablations from coreprimordium to edge, ø50 µm) were quantified for eight elements: Li, Mg, Mn, Co, Cu, Zn, Sr, and Ba, which was followed by microstructure analysis to provide age estimates corresponding to each ablation spot. Age estimates from otoliths ranged from 328 to 498 days post hatch. The combined elemental signatures of four elements (Ba, Mg, Co, Cu) showed a significant increase at the otolith edge in approximately half of the individuals (30-60 days prior to catch). Given the different oceanographic properties of oligotrophic open Pacific vs. high nutrient, upwelling CCLME waters, this signal is consistent with the entry of the fish into the CCLME, which was estimated to occur primarily in July after a transoceanic migration of ~1.5-2.0 months.
Resumo:
Clay mineral assemblages for the last 10 m.y. are described for Site 823, at 16°S in the Queensland Trough, to the northeast of Australia. Largely unaffected by diagenetic influences, these mostly express the evolution of northeastern Australian continental environments during the late Neogene: (1) beginning during the late Miocene at about 7.0 Ma is an increase of illite derived from rocky substrates at the expense of smectite from deeply weathered soils; this increase was the result of increasing aridity in the Australian interior and globally cooler temperatures, associated with increases in Antarctic glaciation; (2) concomitant and further increases of kaolinite fluxes to the Queensland Trough during the late Miocene-early Pliocene largely reflect an increase in rainfall in northeastern Australia; (3) increases in both soil- and rock-derived minerals probably intensified as a result of late Neogene uplift of the eastern highlands; (4) clay-mineral associations during the Pliocene and Pleistocene display minor variations only and probably resulted in part from differential settling and sea-level changes; (5) similar trends of clay-mineral variations occur at both ODP Site 823 and DSDP Site 588 (Lord Howe Rise). Less abundant kaolinite relative to illite at Site 588 nevertheless suggests a southward decrease of continental humidity and/or of the eastern highlands uplift; (6) influences of global climate and oceanic and atmospheric circulations on clay-mineral associations dominated during the late Miocene and were progressively replaced by influences of more regional environmental variations during the Pliocene and especially the Pleistocene.
Resumo:
Different source areas, oceanography and climate regimes influenced the clay mineral assemblages and grain size distribution of two sediment cores from the North and South Aegean Sea during the last glacial and the Holocene. In the North Aegean Sea, clay mineral composition is mainly controlled by sea level evolution, melting of southeastern European glaciers, and establishment of the connection between the Black Sea and Aegean Sea. The long-term development of clay mineral assemblages in the South Aegean Sea reflects changes in the Nile discharge and African dust input. At this site, the establishment of pluvial conditions in the Nile catchment during the early to middle Holocene resulted in a substantial rise in smectite/illite ratios. In the late Holocene, stepwise aridification of the southern borderlands caused an increase in windblown sediment material and a decrease in Nile suspended material. The clay mineral records exhibit periodic millennial-scale fluctuations. In the North Aegean Sea, the changes are centred at a period of 1.3-1.8 ka and can be attributed to short-term climate and weathering changes in the northern borderlands. The changes in the South Aegean Sea are centred at periods of 3.2-4.3, 1.9-2.4 and 1.3-1.7 ka reflecting short-term changes in wind strength and Northeast African hydrology.
Resumo:
The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.
Resumo:
At the request of the Leg 80 scientific party, selected samples of Cretaceous age were processed by X-ray diffraction at the mineralogy laboratories at the Ecole des Mines (Albian to Late Cretaceous samples) and at the Institut de Géologie at Dijon (Barremian samples). The results were used in developing the lithostratigraphy and sedimentology discussed in this volume by Rat et al. 1985 (doi:10.2973/dsdp.proc.80.140.1985) in their study of Barremian-Albian paleoenvironment, by Graciansky and Gillot in their study of Albian and Cenomanian limestones, and by Graciansky and Bourbon in their paleoenvironmental reconstructions for the Late Cretaceous chalks.
Resumo:
Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.