563 resultados para Yttrium.
Resumo:
We studied preservation/dissolution cycles and paleoproductivity in eight sediment cores from the Peru Basin south of the highly productive surface waters of the eastern equatorial Pacific. Stratigraphy is based on stable oxygen isotopes and on combined magnetostratigraphy and biostratigraphy. Sediment cores which span the last 8 m.y., were retrieved during cruise 79 with RV SONNE close to the carbonate compensation depth (CCD). In general, sediments show Pacific-type carbonate cycles. We interpret a pronounced carbonate peak between 6 and 7 Ma as the result of a western and northern extension of the highly productive Peru Current. Decreased carbonate contents from the late Miocene to the late Pliocene might be associated with a slow contraction of the latitudinal extent of the high-productivity belt north of the study areas. During the Pliocene, carbonate variations showed 400 kyr cycles indicating the growth and decay of ice sheets, which should have been associated with pulsations of the Antarctic ice cap. An abrupt collapse of the carbonate system occurred at 2.4 Ma. Higher frequency variations of the carbonate record indicate the major increase of the northern hemisphere glaciation. During the Quaternary, carbonate fluxes are high during glacials and low during interglacials. Large amplitude variations with long broad minima and maxima, associated with small migrations of the lysocline and the CCD (< 200 m), are indicative of the preservation/dissolution history in the Peru Basin. During the early Pleistocene, climatic forcing by the 41 kyr obliquity cycle is not observed in the carbonate record. During the last 800 kyr, variability in the carbonate record was dominated by the 100 kyr eccentricity cycle. Fluxes of biogenic material (calcium carbonate, organic carbon, opal, and barium) were greatest during glacials, which imply higher productivity and export production of the Peru Current during cold climatic periods. Dissolution was greatest during interglacials as inferred from the relatively poor preservation of planktonic foraminifera and from the low accumulation rate of carbonate. After the Mid-Brunhes Event (400 ka), we observe a plateaulike shift to enhanced dissolution and to intensified productivity.
Resumo:
A morphologically complex igneous basement was penetrated at Leg 125 Site 786 beneath approximately 100 m of Eocene-Pleistocene sediments at 31°52.45 'N, 141°13.59'E in a 3082-m water depth. The site is located on the forearc basement high (FBH) of the Izu-Bonin (Ogasawara) Arc. In the broadest terms, the sequence in Hole 786B consists of a basal sheeted dike complex, heavily mineralized in places, with overlying pillow lavas giving way to a complex and repeated sequence of interlayered volcanic breccias and lava flows with some thin sedimentary intervals. The sequence has been further cut by dikes or sills, particularly of high-Ca and intermediate-Ca boninite, and is locally strongly sheared by faulting. The whole basement has been covered with middle Eocene-early Pleistocene sediments. A monomict breccia forms the shallowest portion of Hole 786B and a polymict breccia having Mn-oxide-rich clast coatings and matrix forms the deepest part of Hole 786A (-100-160 mbsf). The basement is tectonized in some places, and a mineralized stockwork is present in the deepest part of Hole 786B. A wide variety of rock types form this basement, ranging from mafic to silicic in character and including high-, intermediate-, and low-Ca boninites, intermediate- and low-Ca bronzite andesites, andesite, dacite, and rhyolite groups. Intragroup and intergroup relationships are complicated in detail, and several different upper mantle source(s) probably were involved. A significant role for orthopyroxene-clinopyroxene-plagioclase fractionation is indicated in the mafic-intermediate groups, and the most probable complementary cumulates should be noritic gabbros. Many overall similarities but some subtle differences are noted between the igneous basement at Site 786 and the subaerial outcrops of the FBH to the south in the type boninite locality of Chichijima. Both suites were derived by hydrous melting of a relatively shallow, refractory (harzburgitic) upper mantle source. These Bonin forearc basement rocks are similar in many respects to those of Eocene-Oligocene age now forming the forearc of the Marianas at Leg 60 Site 458 and on Guam. In sharp distinction, the geochemistry of the Eocene-Pleistocene ash sequences overlying the Bonin FBH must have been derived from a very different upper mantle source, implying considerable across-strike differences in sub-arc mantle composition.
Resumo:
New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galápagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galápagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206Pb/204Pb and only slightly more radiogenic 207Pb/204Pb and 208Pb/204Pb isotope ratios than the basalts. Altered samples from the subducting Galápagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galápagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galápagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galápagos Hotspot ?100 km beyond the morphological hotspot track.
Resumo:
The petrography, mineralogy and geochemistry of volcanic and subvolcanic rocks in CRP-3 core have been examined in detail in order to characterise and to compare them with volcanic and subvolcanic rocks cropping out in the Victoria Land area, and to define the clast provenance or to establish possible volcanic activity coeval with deposition. Clasts with sizes ranging from granule to boulder show geochemical and mineralogical features comparable with those of Ferrar Supergroup rocks. They display a subalkaline affinity and compositions ranging from basalts to dacite. Three different petrographic groups with distinct textural and grain size features (subophitic, intergranular-intersertal, and glassy-hyalopilitic) are recognised and are related to the emplacement/cooling mechanism. In the sand to silt fraction, the few glass shards that have been recognised are strongly altered: however chemical analyses show they have subalkalic magmatic affinity. Mineral compositions of the abundant free clinopyroxene grains found in the core, are less affected by alteration processes, and indicate an origin from subalkaline magmas. This excludes the presence, during the deposition of CRP-3 rocks of alkaline volcanic activity comparable with the McMurdo Volcanic Group. Strong alteration of the magmatic body intruded the Beacon sandstones obliterates the original mineral assemblage. Geochemical investigations confirm that intrusion is part of the Ferar Large Igneous Province.
Resumo:
Igneous rock units were encountered at four of the five sites drilled on Leg 30 of the Deep Sea Drilling Project. These units uncluded a diabase sill at Site 285, a basalt underlain by a gabbro at 286, two basalt flows at 287, and a basalt flow at 289. Site 285 is located approximately in the center of the South Fiji Basin, Site 286 is adjacent to a filled portion of the New Hebrides Trench, Site 287 is adjacent to a basement high in the Coral Sea Basin, and Sites 288 and 289 are located on the Ontong-Java Plateau north of the Solomon Islands (Figure 1). Figure 2 presents generalized lithologic columns for the igneous rock units found at these sites. When a unit number is given, e.g., Site 286, Unit 4 basalt, this number conforms with the unit number assigned to it in the overall stratigraphic sequence of that hole as defined in the individual Site Reports in this volume. Unless otherwise stated, depths are given as measured from the sediment-igneous rock contact rather than the mudline.
Resumo:
In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.
Resumo:
The basalts recovered during Legs 183 and 120 from the southern, central, and northernmost parts of the Kerguelen Plateau (Holes 1136A, 1138A, 1140A, and 747C, respectively), as well as those recovered from the eastern part of the crest of Elan Bank (Hole 1137A), represent derivates from tholeiitic melts. In the northern part of the Kerguelen Plateau (Hole 1140A), basalts may have formed from two sources located at different depths. This is reflected in the presence of both low- and high-titanium basalts. The basalts are variably altered by low-temperature hydrothermal processes (at temperatures up to 120°C), and some are affected by subaerial weathering. The hydrothermal alteration led mainly to the formation of smectites, chlorite minerals, mixed-layer hydromica-smectite and smectite-chlorite minerals, hydromica, serpentine(?), clinoptilolite, heulandite, stilbite, analcime, mordenite, thomsonite, natrolite(?), calcite, quartz, and dickite(?). Alteration of extrusive basalts is mainly related to horizontal fluid flow within permeable contact zones between lava flows. Under a nonoxidizing environment of alteration, the tendency to lose most of elements, including rare earth elements, from basalts dominates. Under on oxidizing environment, basalts accumulate many elements.
Resumo:
Major element, trace element, and radiogenic isotope compositions of samples collected from Ocean Drilling Program Leg 126 in the Izu-Bonin forearc basin are presented. Lavas from the center of the basin (Site 793) are high-MgO, low-Ti, two-pyroxene basaltic andesites, and represent the products of synrift volcanism in the forearc region. These synrift lavas share many of the geochemical and petrographic characteristics of boninites. In terms of their element abundances, ratios, and isotope systematics they are intermediate between low-Ti arc tholeiites from the active arc and boninites of the outer-arc high. These features suggest a systematic geochemical gradation between volcanics related to trench distance and a variably depleted source. A basement high drilled on the western flank of the basin (Site 792) comprises a series of plagioclase-rich two-pyroxene andesites with calc-alkaline affinities. These lavas are similar to calc-alkaline volcanics from Japan, but have lower contents of Ti, Zr, and low-field-strength elements (LFSE). Lavas from Site 793 show inter-element variations between Zr, Ti, Sr, Ni, and Cr that are consistent with those predicted during crystallization and melting processes. In comparison, concentrations of P, Y, LFSE, and the rare-earth elements (REE) are anomalous. These elements have been redistributed within the lava pile, concentrating particularly in sections of massive and pillowed flows. Relative movement of these two-element groupings can be related to the alteration of interstitial basaltic andesite glass to a clay mineral assemblage by a post-eruptive process. Fluid-rock interaction has produced similar effects in the basement lavas of Site 792. In this sequence, andesites and dacites have undergone a volume change related to silica mobility. As a result of this process, some lithologies have the major element characteristics of basaltic andesite and rhyolite, but can be related to andesitic or dacitic precursors by silica removal or addition.
Resumo:
Recent investigations of the southern Gulf of California (22°N) on Leg 65 of the Deep Sea Drilling Project (DSDP) allow important comparisons with drilled sections of ocean crust formed at different spreading rates. During Leg 65 the Glomar Challenger drilled seven basement holes at sites forming a transect across the ridge axis near the Tamayo Fracture Zone. An additional site was drilled on the fracture zone itself, where a small magnetic "diapir" was located. Together with the material from Site 474 (drilled during Leg 64) the cores recovered at these sites are representative of the upper basaltic and sedimentary crust formed since the initial opening of the Gulf. The pattern of magmatic accretion at the ridge axis is conditioned by the moderate to high rate of spreading (~6 cm/y.) and comparatively high sedimentation rates that now characterize the Gulf of California. In terms of spreading rate, this region is intermediate between the "superfast" East Pacific Rise axis to the south (up to 17 cm/y.) and the slow-spreading Mid-Atlantic Ridge (2-4 cm/y.) both of which have been extensively studied by dredging and drilling.
Resumo:
Quaternary sedimentation within the Japan Sea was controlled by the configuration of peripheral sills, seasonal and long-term climatic variability, and the resultant fluctuations in sea level (Tamaki, 1988). Prior to drilling in the area, piston cores recovered from its basins contained Pleistocene sediments having distinctive color and fabric variation. Sedimentological and geochemical studies conducted on those facies indicated that the variability in fabric was the result of fluctuating marine and/or terrigenous influx to the deep-water basins of the Japan Sea (see, for example, Chough, 1984; Matoba, 1984). The sequences recovered during Leg 127 at Sites 794, 795, and 797 contain long, virtually undisturbed sequences (92.3, 123, and 119.9 mbsf [Hole 797B], respectively) of upper Miocene, upper Pliocene, and Pleistocene/Holocene sediments. The majority of these sequences consists of dark-colored (dark brown, green, and black) silty-clays, many of which are enriched in biogenic components (majority silicious, some carbonate) and/or organic matter, some containing pyrite and/or ash. These facies alternate with light-colored silty-clays, some containing ash and some showing signs of bioturbation (for example, Tamaki, Pisciotto, Allan, et al., 1990, p. 425-433). The dark-to-light sequences are present throughout the section, although they are especially dominant throughout the Pleistocene (for a more detailed lithology of Quaternary sequences recovered at Sites 794, 795, and 797, see Follmi et al. 1992 and Tada et al., 1992). This data report provides trace metal information on Pliocene-Pleistocene-Holocene samples at Sites 794,795, and 797. These data can be used (1) to provide information related to the depositional environments of the Japan Sea during the Quaternary period, (2) to permit comparisons between the dark organic-rich sediments recovered from this semi-enclosed basin and those reported for other silled basins (for example, the Mediterranean and Black seas), and (3) to permit comparisons between these sediments and contemporary equivalents found, for instance, beneath areas of high biogenic productivity. By providing such data, one should be able (1) to determine more precisely the processes governing the deposition of sediments with various levels of organic matter within enclosed basins, (2) to compare individual basin-wide processes, (3) to look for and compare the signatures present as a result of climatic fluctuation, and (4) to attempt to identify the presence and/or absence of cyclicity within such sequences.
Resumo:
We obtained major and trace element data on 113 samples from basalts drilled during DSDP Legs 69 and 70 in the Costa Rica Rift area. The majority have major and trace element characteristics typical of ocean-ridge tholeiities. Most of the basalts are relatively MgO rich (MgO > 8 wt.%) and have Mg values (MgO/MgO + 0.85FeO x 100) of about 53, characteristics that clearly indicate that the various magmas underwent only a small amount of crystal fractionation before being erupted onto the seafloor. According to their normative mineralogies, the rocks are olivine tholeiites. A few samples plot close to the diopside-hypersthene join of the projected basalt tetrahedron. Except for basalts from two thin intervals in Hole 504B, which differ significantly from all the other basalts of the hole, practically no chemical downhole variation could be established. In the two exceptional intervals, both TiO2 and P2O5 contents are markedly enriched among the major oxides. The trace elements in these intervals are distinguished by relatively high contents of magmatophile elements and have flat to enriched chondrite-normalized distribution patterns of light rare earth elements (LREE). Most of the rocks outside these intervals are strongly depleted in large-ionlithophile (LIL) elements and LREE. We offer no satisfactory hypothesis for the origin of these basalts at this time. They might have originated within pockets of mantle materials that were more primitive than the LIL-element-depleted magmas that were the source of the other basalts. A significant change with depth in the type of alteration occurs in the 561 meters of basalt cored in Hole 504B. According to the behavior of such alteration-sensitive species as K2O, H2O-, CO2, S, Tl, and the iron oxidation ratio, the alteration is oxidative in the upper part and nonoxidative or even reducing in the lower part. The oxidative alteration may have resulted from low temperature basalt/seawater interaction, whereas hydrothermal solutions may be responsible for the nonoxidative alteration.
Resumo:
An investigation of ~1-m.y.-old dikes and lavas from the north wall of the Hess Deep Rift (2°15'N, 101°30'W) collected during Alvin expeditions provides a detailed view of the evolution of fast spreading oceanic crust. The study area encompasses 25 km of an east-west flow line, representing ~370,000 years of crustal accretion at the East Pacific Rise. Samples analyzed exhibit depleted incompatible trace element abundances and ratios [(La/Sm)N < 1]. Indices of fractionation (MgO), and incompatible element ratios (La/Sm, Nb/Ti) show no systematic trends along flow line. Rather, over short (<4 m) and long (~25 km) distances, significant variations are observed in major and trace element concentrations and ratios. Modeling of these variations attests to the juxtaposition of dikes of distinct parental magma compositions. These findings, combined with studies of segmentation of the subaxial magma chamber and lateral magma transport in dikes along rift-dominated systems, suggest a more realistic model of the magmatic system underlying the East Pacific Rise relative to the commonly assumed twodimensional model. In this model, melts from a heterogeneous mantle feed distinct portions of a segmented axial magma reservoir. Dikes emanating from these distinct reservoirs transport magma along axis, resulting in interleaved dikes and host lavas with different evolutionary histories. This model suggests the use of axial or flow line lava compositions to infer the evolution of axial magma chambers should be approached with caution because dikes may never erupt lava or may transport magma significant distances along axis and erupt lavas far from their axial magma chamber of origin.