508 resultados para Wade, George
Resumo:
During a field campaign in the Austral spring 2012 the sedimentary architecture of a periglacial flood plain at the northeastern coast of Potter Peninsula (Area 5) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 14 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).
Resumo:
Newly sampled basaltic andesites and andesites from the tholeiitic Ferrar Supergroup of northern Victoria Land and George V Land, Antarctica, are attributed to the known low-Ti and high-Ti series. Aside from known sparsely distributed high-Ti extrusives, a high-Ti sill was found in the Alamein Range outside the Rennick Graben. Low-Ti lavas, sills and dikes display wide petrographical, mineral and geochemical variations, reflecting extensive in-situ differentiation. High-Ti rocks from Litell Rocks are homogeneous with respect to mineralogy and geochemistry, minor deviations are shown by the sampled sill. Chilled margins of low-Ti sills, dikes and lava flows exhibit nearly constant bulk-rock chemistry (mg# ~60) within the studied area. Compared to chilled margins from Tasmanian sills, the striking uniformity of the pre-emplacement chemistry of Ferrar magmas over large distances supports the magma transport model of Elliot et al. (1999, doi:10.1016/S0012-821X(99)00023-0). In the area investigated, compositional variations within the low-Ti series, caused by in-situ differentiation, increase towards the Wilson-Bowers Terrane boundary, possibly displaying the asymmetrical distribution of outcrops over this area. Absence of Ferrar occurrences east of the Bowers Terrane remains a matter of palaeo-geodynamic discussion. Besides, the secondary mineralogy of extrusives from Litell Rocks and Monument Nunataks exhibits noticeable differences, which indicates an elevated thermal gradient in the vicinity of Litell Rocks compared to Monument Nunataks during the Cretaceous.
Resumo:
The east coast of the AP is highly influenced by cold and dry air masses stemming from the adjacent Weddell Sea. By the contrary, the west coast jointly with the South Shetland Islands are directly exposed to the humid and relatively warm air masses from the South Pacific Ocean carried by the strong and persistent westerly winds. Systematic glaciological field studies are very scarce on both sides of the AP, among them can be mentioned a mass-balance program performed continuously since summer 1998/99 by the Instituto Antártico Argentino (IAA) on Vega Island, James Ross Archipelago, on the northeastern flank of the AP. Another continuous plurianual glaciological research has been initiated in 2010 jointly by the University of Bonn and the IAA at the Fourcade Glacier on King George Island (KGI) within the framework of the ESF project IMCOAST (FK 03F0617B). Two transects of mass balance stakes were installed from the top of the Warszawa Ice Dome down to the border of the glaciers Fourcade and Polar Club, to serve for calibration and validation of modeling efforts. The stakes were measured at the beginning and end of each summer field campaign in November 2010, February - March 2011, January - March 2012, and especially during the austral winter 2012 up to March 2013 every 10 to 14 days depending on weather conditions. During the austral winter 2013 and until June 2014 the measurements were conducted every 20 to 30 days, weather permitting. Snow density was measured as well in every field trip from June 2012 until June 2104, establishing a rather homogeneous value along the different parts of the glacier. Snow density in late summer, rho_s is usually higher than the one in late winter, rho_w. Seasonal average values were calculated for the area covered by the mass balance stakes, being rho_s= 471 Kg/m**3 and rho_w = 363 Kg/m**3.