388 resultados para Tatge, David B
Resumo:
The dominant processes determining biological structure in lakes at millennial timescales are complex. In this study, we used a multi-proxy approach to determine the relative importance of in-lake versus indirect processes on the Holocene development of an oligotrophic lake in SW Greenland (66.99°N, 50.97°W). A 14C and 210Pb-dated sediment core covering approximately 8500 years BP was analyzed for organic-inorganic carbon content, pigments, diatoms, chironomids, cladocerans, and stable isotopes (d13C, d18O). Relationships among the different proxies and a number of independent controlling variables (Holocene temperature, an isotope-inferred cooling period, and immigration of Betula nana into the catchment) were explored using redundancy analysis (RDA) independent of time. The main ecological trajectories in the lake biota were captured by ordination first axis sample scores (18-32% variance explained). The importance of the arrival of Betula (ca. 6500 years BP) into the catchment was indicated by a series of partial-constrained ordinations, uniquely explaining 12-17% of the variance in chironomids and up to 9% in pigments. Climate influences on lake biota were strongest during a short-lived cooling period (identified by altered stable isotopes) early in the development of the lake when all proxies changed rapidly, although only chironomids had a unique component (8% in a partial-RDA) explained by the cooling event. Holocene climate explained less variance than either catchment changes or biotic relationships. The sediment record at this site indicates the importance of catchment factors for lake development, the complexity of community trends even in relatively simple systems (invertebrates are the top predators in the lake) and the challenges of deriving palaeoclimate inferences from sediment records in low-Arctic freshwater lakes.
Resumo:
Mid-Cretaceous sediments recovered during Ocean Drilling Program Leg 183 (Cores 183-1138A-69R to 73R) on the central Kerguelen Plateau have been analyzed palynologically and paleobotanically to determine the age of the strata and to reconstruct vegetational development and paleoecology. The lower strata (Cores 183-1138A-71R to 73R), a dark, organic-rich silty claystone with many wood fragments and fern remains (sedimentary Unit VI), certainly of terrestrial origin, directly overlies the volcanic basement, which is dated as latest Albian (~95 to 103 Ma) to earliest Cenomanian. The age of the terrestrial strata can be determined by sporomorphs as late Albian to earliest Cenomanian as well. This shows that parts of the central Kerguelen Plateau must have been subaerial at least until the late Albian and were covered with a diverse high-latitude flora, probably dense conifer forest with various fern taxa in the undergrowth. Early angiosperms are also present. The vegetational character represented in Unit VI did not change significantly through time. However, varying percentages of several sporomorph groups seem to show recurring abundance variations, which might possibly be cyclic, caused by Milankovitch-type cyclic events. Cores 183-1138A-67R through 69R, of open marine origin, contain medium- to high-diversity dinocyst assemblages. Based on previous stratigraphic zonation schemes, the ages of these strata range within the Heterosphaeridium Superzone, from the Palaeohystrichophora infusorioides Zone to the Conosphaeridium striatoconus Zone, which correlates to the latest Cenomanian to Coniacian.
Resumo:
The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and d11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater [B(OH)4]?/[HCO3]? with a roughly constant partition coefficient (KD =([B/Ca]of CaCO3)/([B(OH)4]-/[HCO3]-)of seawater) of 1.48 ± 0.15 * 10**-3 (2sigma), and d11B in this species is offset below d11B of the borate in seawater by 3.38 ± 0.71 per mil (2sigma). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 * 10**-3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10-50 ppmv during 19-10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution d11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.