184 resultados para SPREADABLE PROCESSED CHEESE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of water level time series data strongly varies with periods of high and low quality sensor data. In this paper we are presenting the processing steps which were used to generate high quality water level data from water pressure measured at the Time Series Station (TSS) Spiekeroog. The TSS is positioned in a tidal inlet between the islands of Spiekeroog and Langeoog in the East Frisian Wadden Sea (southern North Sea). The processing steps will cover sensor drift, outlier identification, interpolation of data gaps and quality control. A central step is the removal of outliers. For this process an absolute threshold of 0.25m/10min was selected which still keeps the water level increase and decrease during extreme events as shown during the quality control process. A second important feature of data processing is the interpolation of gappy data which is accomplished with a high certainty of generating trustworthy data. Applying these methods a 10 years dataset (December 2002-December 2012) of water level information at the TSS was processed resulting in a seven year time series (2005-2011).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data set was obtained during the R. V. POLARSTERN cruise ANT-XXVIII/3. Current velocities were measured nearly continuously when outside territorial waters along the ship's track with a vessel-mounted TRD Instruments' 153.6-kHz Ocean Surveyor ADCP. The transducers were located 11 m below the water line and were protected against ice floes by an acoustically transparent plastic window. The current measurements were made using a pulse of 2s and vertical bin length of 4 m. The ship's velocity was calculated from position fixes obtained by the Global Positioning System (GPS). Heading, roll and pitch data from the ship's gyro platforms and the navigation data were used to convert the ADCP velocities into earth coordinates. Accuracy of the ADCP velocities mainly depends on the quality of the position fixes and the ship's heading data. Further errors stem from a misalignment of the transducer with the ship's centerline. The ADCP data were processed using the Ocean Surveyor Sputum Interpreter (OSSI) software developed by GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel. The averaging interval was set to 120 seconds. The reference layer was set to bins 5 to 16 avoiding near surface effects and biases near bin 1. Sampling interval setting: 2s; Number of bins: 80; Bin length: 4m; Pulse length: 4m; Blank beyond transmit length: 4m. Data processing setting: Top reference bin: 5; Bottom reference bin: 16; Average: 120s; Misalignment amplitude: 1.0276 +/- 0.1611, phase: 0.8100 +/- 0.7190. The precision for single ping and 4m cell size reported by TRDI is 0.30m/s. Resulting from the single ping precision and the number of pings (most of the time 36) during 120seconds the velocity accuracy is nearly 0.05m/s. (Velocity accuracy = single ping precision divided by square root of the number of pings).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (omega arag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistilata, exposed to high pCO2(or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistilata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO2 conditions, corresponding to pHTvalues of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater omega arag <1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C) and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO2 (low pH) conditions. Both species showed similar trends of delta11B depletion and delta18O enrichment under reduced pH, whereas the delta13C results imply species-specific metabolic response to high pCO2 conditions. The skeletal delta11B values plot above seawater delta11B vs. pH borate fractionation curves calculated using either the theoretically derived deltaB value of 1.0194 (Kakihana et al., Bull. Chem. Soc. Jpn. 50(1977), 158) or the empirical deltaB value of 1.0272 (Klochko et al., EPSL 248 (2006), 261). However, the effective deltaB must be greater than 1.0200 in order to yield calculated coral skeletal delta11B values for pH conditions where omega arag >1. The delta11B vs. pH offset from the literature seawater delta11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal delta13C and delta18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeleton

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical and biological carbon pumps in the different hydrographic and biogeochemical regimes of the Atlantic Sector of the Southern Ocean are controlled by a series of coupled physical, chemical and biological processes and a project named Eddy-Pump was designed to study them. The Eddy Pump field campaign was carried out during RV Polarstern Cruise ANT-XXVIII/3 between January and March 2012. Particular emphasis was laid on the differences which occur along the axis of the Antarctic Circumpolar Current (ACC) with its associated mesoscale eddy field. The study sites were selected in order to represent (1) the central ACC with its regular separation in different frontal jets, investigated by a meridional transect along 10°E; (2) a large-scale bloom west of the Mid-Atlantic Ridge which lasted several months with conspicuous chlorophyll-poor waters to its immediate east studied by a three-dimensional mesoscale survey centred at 12°40'W; and (3) the Georgia Basin north of the island of South Georgia, which regularly features an extended and dense phytoplankton bloom, was investigated by a mesoscale survey centred at 38°12'W. While Eddy-Pump represents an interdisciplinary project by design, we here focus on describing the variable physical environment within which the different biogeochemical regimes developed. For describing the physical environment we use measurements of temperature, salinity and density, of mixed-layer turbulence parameters, of dynamic heights and horizontal current vectors, and of flow trajectories obtained from surface drifters and submerged floats. This serves as background information for the analyses of biological and chemical processes and of biogeochemical fluxes addressed by other papers in this issue. The section along 10°E between 44°S and 53°S showed a classical ACC structure with well-known hydrographic fronts, the Subantarctic Front (SAF) at 46.5°S, the Antarctic Polar Front (APF) split in two, at 49.25°S and 50.5°S, and the Southern Polar Front (SPF) at 52.5°S. Each front was associated with strong eastward flows. The West Mid-Atlantic Ridge Survey showed a weak and poorly resolved meander structure between the APF and the SPF. During the first eight days of the survey the oceanographic conditions at the Central Station at 12°40'W remained reasonably constant. However after that, conditions became more variable in the thermocline with conspicuous temperature inversions and interleavings and also a decrease in temperature in the surface layer. At the very end of the period of observation the conditions in the thermocline returned to being similar to those observed during the early part of the period with however the mixed layer temperature raised. The period of enhanced thermohaline variability was accompanied by increased currents. The Georgia Basin Survey showed a very strong zonal jet at its northern edge which connects to a large cyclonic meander that itself joins an anticyclonic eddy in the southeastern quadrant. The water mass contrasts in this survey were stronger than in the West Mid-Atlantic Ridge Survey, but similar to those met along 10°E with the exception that the warm and saline surface water typical of the northern side of the SAF was not covered by the Georgia Basin Survey. Mixed layers found during Eddy-Pump were typically deep, but varied between the three survey areas; the mean depths and standard variations of the mixed layer along the 10°E were 77.2±24.7 m, at the West Mid-Atlantic Ridge 66.7±17.7 m, and in the Georgia Basin 36.8±10.7 m.