191 resultados para POP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen analysis of Wisconsinan sediments from eleven localities in northern and central Illinois, combined with the results of older studies, allows a first general survey of the vegetational changes in Illinois during the last glaciation. In the late Altonian (after 40,000 B.P.), pine was already the most prevalent tree type in northern Illinois. Probably because of the influence of the last Altonian ice advance to northern Illinois, pine migrated to the south and reached south-central Illinois, which was at that time a region of prairie, with oak and hickory trees in favorable sites. Likewise in the late Altonian, spruce appeared in northern Illinois. Spruce also expanded its area to the south during the Wisconsinan, reaching south-central Illinois only after 21,000 B.P., in the early Woodfordian. Deciduous trees (predominantly oak) were present in south-central Illinois throughout the Wisconsinan. Their prevalence decreased to the north. The vegetation during the different subdivisions of the last glacial period in Illinois was approximately as follows: Late Altonian: Pine/spruce forest with some deciduous trees in northern and central Illinois; prairie and oak/hickory stands in south-central Illinois; immigration of pine. Farmdalian: Pine/spruce forest in central Illinois; deciduous trees and pine in south-central Illinois, with areas of open vegetation, perhaps similar to the present-day transition of prairie to forest in the northern Great Plains. Woodfordian: Northern and central Illinois ice covered; in south central Illinois, spruce and oak as dominant tree types, but also pine and grassland. During the Woodfordian, pine and spruce disappeared again from south-central Illinois, and oak/hickory forest and prairie again prevailed. The ice-free areas of northern Illinois become populated temporarily with spruce, but later there is proof of deciduous forest in this region. Pollen investigations in south-central Illinois have shown convincingly that deciduous trees could survive relatively close (less than 60 km) to the ice margin. Therefore the frequently presented view that arctic climatic conditions prevailed in North America during the last glaciation far south of the ice margin can be refuted for the Illinois area, confirming the opinion of other authors resulting from investigations of fossil mollusks and frost-soil features. The small number of localities investigated still permits no complete reconstruction of the vegetation zones and their possible movements in Illinois. During the Altonian and Farmdalian in Illinois, a vegetational zonation probably existed similar to that of today in North America. As the ice pushed southward as far as 39° 20' N. lat in the early Woodfordian, this zonation was apparently broken up under the influence of a relatively moderate climate. In any case, the Vandalia area, which was only about 60 km south of the ice, was at that time neither in a tundra zone nor in a zone of boreal coniferous forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present, when the influence of human economic activity is progressively increasing, significant attention is devoted to the state of water ecosystems. All researchers engaged in these problems agree that the state of the water system (pollution and eutrophication) can only be estimated on the basis of long-term researches. Systemic monitoring (at least once per month) of ionic components (Ca2+, Mg2+, Na+, K+, bicarbonates, sulfates, and chlorides) in unfiltered water of Lake Baikal and its tributaries had been carried out under the supervision of Votintsev since 1947. Based on the analysis of systematic data on trophic components obtained during 1965-2005, we tried to estimate the present-day trophic status of the pelagic zone in the lake, define the trend of long-term changes of trophic components and understand the reasons of the distortion of cyclicity in the development of spring diatom algae, which create a favorable environment in any water basin. It should be noted that the station near Cape Polovinnyi is located 20 km away from the town of Baikal'sk. Wastewaters of the Baikal'sk pulp and paper mill is the main source of dioxins and furans in Baikal. Based on the significant difference between sulfate contents in wastewaters of the plant (>300 mg/l), tributaries of Baikal (7.5 mg/l), and waters in the southern part of the lake (3.9 mg/l), we defined the following periods: (i) period of natural seasonal patterns until 1967-1968 (prior to putting the Baikal'sk Mill into operation; (ii) period of weak anthropogenic pollution (1969-1985); and (iii) period of strong anthropogenic pollution since 1986.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coccolithophore Calcidiscus leptoporus was grown in batch culture under nitrogen (N) as well as phosphorus (P) limitation. Growth rate, particulate inorganic carbon (PIC), particulate organic carbon (POC), particulate organic nitrogen (PON), and particulate organic phosphorus (POP) production were determined and coccolith morphology was analysed. While PON production decreased by 70% under N-limitation and POP production decreased by 65% under P-limitation, growth rate decreased by 33% under N- as well as P-limitation. POC as well as PIC production (calcification rate) increased by 27% relative to the control under P-limitation, and did not change under N-limitation. Coccolith morphology did not change in response to either P or N limitation. While these findings, supported by a literature survey, suggest that coccolith morphogenesis is not hampered by either P or N limitation, calcification rate might be. The latter conclusion is in apparent contradiction to our data. We discuss the reasons for this inference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new interglacial pollen sequence from the Döttinger dry maar in the Eifel region of the Rheinish Schield is presented. Palynology is used to correlated to several classical north German Holsteinian sites. The lake sediments reveal the complete interglacial and also 60 m of laminated sediments from the glacial preceding the Holsteinian. The interglacial section indicates limnic conditions in its lower part and telmatic conditions in its upper part with an intermediate episode of peat formation. Ash layers document internsive volcansim during the interglacial in the Eifel region. Some of the north German Holsteinian sites reval spikes of high abundance of Pinus, Beutal and Poaceae and/or setbacks of more demanding taxa during the interglacial, often interpreted as cold events. The Döttingen profile shows similar pattern, but with little response from the thermophilous pollen taxa. In the Döttingen sequence these vegetation 'anomalies' are preceded, or accompanied by phases of active volcanism. The role/interaction of climate and/or volcanism as a likely cause for these vegetation 'anomalies' ist still to be quantified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of CO2 concentration on elemental composition of the coccolithophore Emiliania huxleyi were studied in phosphorus-limited, continuous cultures that were acclimated to experimental conditions for 30 d prior to the first sampling. We determined phytoplankton and bacterial cell numbers, nutrients, particulate components like organic carbon (POC), inorganic carbon (PIC), nitrogen (PN), organic phosphorus (POP), transparent exopolymer particles (TEP), as well as dissolved organic carbon (DOC) and nitrogen (DON), in addition to carbonate system parameters at CO2 levels of 180, 380 and 750 µatm. No significant difference between treatments was observed for any of the measured variables during repeated sampling over a 14 d period. We considered several factors that might lead to these results, i.e. light, nutrients, carbon overconsumption and transient versus steady-state growth. We suggest that the absence of a clear CO2 effect during this study does not necessarily imply the absence of an effect in nature. Instead, the sensitivity of the cell towards environmental stressors such as CO2 may vary depending on whether growth conditions are transient or sufficiently stable to allow for optimal allocation of energy and resources. We tested this idea on previously published data sets where PIC and POC divided by the corresponding cell abundance of E. huxleyi at various pCO2 levels and growth rates were available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P = 26) at dilution rates (D) of 0.3 d- and 0.1 d-1. CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C and 900 µatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 µatm pCO2 compared to 300 and 550 µatm pCO2. At 900 µatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell-1) were similar at D = 0.3 d-1 in all cultures. At D = 0.1 d-1, a reduction of C-quotas by up to 15% was observed in the 900 µatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D = 0.3 d-1, and from 0.11 to 0.17 at D = 0.1 d-1, with variations primarily induced by the changes in POC. At D = 0.1 d-1, cell volume was reduced by up to 22% in cultures grown at 900 µatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.