389 resultados para Ocean circulation -- British Columbia -- Muchalat Inlet
Resumo:
Evidence from paleoclimatic archives suggests that Earth's climate experienced rapid temperature changes associated with pronounced interhemispheric asymmetry during the last glacial period. Explanations for these climate excursions have converged on nonlinear interactions between ice sheets and the ocean's thermohaline circulation, but the driving mechanism remains to be identified. Here we use multidecadal marine records of faunal, oxygen isotope, and sediment proxies from the northeast Atlantic proximal to the western margins of the last glacial British Ice Sheet (BIS) to document the coupling between ice sheet dynamics, ocean circulation, and insolation changes. The core data reveal successions of short-lived (80-100 years), high-amplitude ice-rafted debris (IRD) events that were initiated up to 2000 years before the deposition of detrital carbonate during Heinrich events (HE) 1 and 2. Progressive disintegration of the BIS 19-16 kyr before present (B.P.) occurred in response to abrupt ocean-climate warmings that impinged on the northeast Atlantic during the early deglaciation. Peak IRD deposition recurs at 180-220 year intervals plausibly involving repeated breakup of glacial tidewater margins and fringing marine ice shelves. The early deglaciation culminated in a major meltwater pulse at ~16.3 kyr B.P. followed by another discharge associated with HE1 some 300 years after. We conclude that temperature changes related to external forcing and marine heat transport caused a rapid response of the BIS and possibly other margins of the Eurasian Ice Sheet. Massive but short-lived meltwater surges influenced the Atlantic meridional overturning circulation thereby contributing to North Atlantic climate variability and bipolar climatic asymmetry.
Resumo:
We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.
Resumo:
Freshwater in the Arctic Ocean plays an important role in the regional ocean circulation, sea ice, and global climate. From salinity observed by a variety of platforms, we are able, for the first time, to estimate a statistically reliable liquid freshwater trend from monthly gridded fields over all upper Arctic Ocean basins. From 1992 to 2012 this trend was 600±300 km**3/yr. A numerical model agrees very well with the observed freshwater changes. A decrease in salinity made up about two thirds of the freshwater trend and a thickening of the upper layer up to one third. The Arctic Ocean Oscillation index, a measure for the regional wind stress curl, correlated well with our freshwater time series. No clear relation to Arctic Oscillation or Arctic Dipole indices could be found. Following other observational studies, an increased Bering Strait freshwater import to the Arctic Ocean, a decreased Davis Strait export, and enhanced net sea ice melt could have played an important role in the freshwater trend we observed.