206 resultados para Matter paragraphs in audit reports


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine organic matter (OM) sinks from surface waters to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as energy and carbon source, produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. We hypothesized that in the oligotrophic deep Arctic basin the molecular signal of freshly deposited primary produced OM is restricted to the surface sediment pore waters which should differ from bottom water and deeper sediment pore water in DOM composition. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether the signal of marine vs. terrigenous DOM is represented by different compounds preserved in the sediment pore waters and 3) whether there is any relation between Arctic Ocean ice cover and DOM composition. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer, were correlated with environmental parameters by partial least square analysis. The fresher marine detrital OM signal from surface waters was limited to pore waters from < 5 cm sediment depth. The productive ice margin stations showed higher abundances of peptides, unsaturated aliphatics and saturated fatty acids formulae, indicative of fresh OM/pigments deposition, compared to northernmost stations which had stronger aromatic signals. This study contributes to the understanding of the coupling between the Arctic Ocean productivity and its depositional regime, and how it will be altered in response to sea ice retreat and increasing river runoff.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the ARCTIC '91-Expedition with RV 'Polarstern', several Multicorer and Kastenlot-cores were recovered along a profile crossing the eastern part of the Arctic Ocean. The investigated cores consist mainly of clayey-silty sediments, and some units with a higher sand content. In this thesis, detailed sedimentological and organic-geochemical investigations were performed. In part, the near surface sediments were AMS-14C dated making it possible to Interpret the results of the organic-geochemical investigations in terms of climatic changes (isotopic stage 2 to the Holocene). The more or less absence of foraminifers within the long cores prevented the development of an oxygen isotope stratigraphy. Only the results of core PS2174-5 from the Amundsen-Basin could be discussed in terms of the climatic change that could be dated back to oxygen isotope stage 7. Detailed organic-geochemical investigations in the central Arctic Ocean are rare. Therefore, several different organic-geochemical methods were used to obtain a wide range of data for the Interpretation of the organic matter. The high organic carbon content of the surface sediments is derived from a high input of terrigenous organic matter. The terrigenous organic material is most likely entrained within the sea-ice On the Siberian shelves and released during ice-drift over the Arctic Ocean. Other factors such as iceberg-transport and turbidites are also responsible for the high input of terrigenous organic matter. Due to the more or less closed sea-ice Cover, the Arctic Ocean is known as a low productivity system. A model shows, that only 2 % of the organic matter in central Arctic Ocean sediments is of a marine origin. The influence of the West-Spitsbergen current increases the marine organic matter content to 16 %. Short chain n-alkanes (C17 and C19) can be used as a marker of marine productivity in the Arctic Ocean. Higher contents of short chain n-alkanes exist in surface sediments of the Lomonosov-Ridge and the Makarov-Basin, indicating a higher marine productivity caused by a reduced sea-ice Cover. The Beaufort-Gyre and Transpolar-Drift drift Patterns could be responsible for the lower sea-ice distribution in this region. The sediments of Stage 2 and Stage 3 in this region are also dominated by a higher content of short chain-nalkanes indicating a comparable ice-drift Pattern during that time. The content and composition of organic carbon in the sediments of core PS2174-5 reflect glaciallinterglacial changes. Interglacial stages 7 and 5e show a low organic carbon content (C 0,5 %) and, as indicated by high hydrogen-indices, low CIN-ratios, higher content of n-alkanes (C17 and C19) and a higher opal content, a higher marine productivity. In the Holocene, a high content of foraminifers, coccoliths, ostracodes, and sponge spicules indicate higher surface-water productivity. Nevertheless, the low hydrogenindices reveal a high content of terrigenous organic matter. Therefore, the Holocene seems to be different from interglacials 7 and 5e. During the glacial periods (stages 6, upper 5, and 4), TOC-values are significantly higher (0.7 to 1.3 %). In addition, low hydrogen-indices, high CIN-ratios, low short chain n-alkanes and opal contents provide evidence for a higher input of terrigenous organic matter and reduced marine productivity. The high lignin content in core sections with high TOC-contents, substantiates the high input of terrigenous organic matter. Changes in the content and composition of the organic carbon is believed to vary with the fluctuations in sea-level and sea-ice coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated spatial and temporal changes in quantity, quality and bioavailability of organic matter in abyssal sediments of the northeastern Atlantic. Sediment samples were collected in the Porcupine Abyssal Plain (PAP, 4800 m depth) during 6 oceanographic cruises from September 1996 to October 1998 down to a depth of 15 cm. Sedimentary proteins, carbohydrates and lipids, and their enzymatically hydrolysable fractions showed significant temporal changes, but different biochemical classes displayed different temporal patterns. Total proteins, carbohydrates and lipids displayed high concentrations, whereas the potentially hydrolysable fractions accounted for only about 10% of their total pools. From September 1996 to October 1998, bioavailable organic carbon concentration in the sediments decreased about 10 gC/m**2 indicating that this benthic system was not steady state. Hydrolysed proteins and carbohydrates were characterised by different vertical patterns. Carbohydrates increased their relative significance with depth in the sediment indicating a shift of organic matter bioavailability with important trophodynamic implications for subsurface consumers. Vertical profiles of reactive and refractory organic carbon in PAP sediments indicate that organic matter bioavailability in deeper sediment layers is higher than expected from previous theoretical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaCO3 and total organic carbon concentrations, organic matter C/N and carbon isotope ratios, and sediment accumulation rates in late Quaternary sediments from DSDP Site 594 provide information about glacial-interglacial variations in the delivery of organic matter to the Chatham Rise offshore of southeastern New Zealand. Low C/N ratios and nearly constant organic delta13C values of ?23? indicate that marine production dominates organic matter supply in both glacial and interglacial times during oxygen isotope stages 1 through 6 (0-140 ka) and 17 through 19 (660-790 ka). Increased organic carbon mass accumulation rates in isotope stages 2, 4, 6, and 18 record enhanced marine productivity during glacial maxima. Excursions of organic delta13C values to ca. ?29? in portions of isotope stage 2 suggest that the local concentration of dissolved CO2 was occasionally elevated during the last glacial maximum, probably as a result of short periods of lowered sea-surface temperature. Dilution of carbonates by clastic continental sediment generally increases at this location during glacial maxima, but enhanced delivery of land-derived organic matter does not accompany the increased accumulation of clastic sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloroform extracts of water-soluble organic matter collected in the water column from the surface to the bottom were studied by C-13 and H-1 NMR chromatographic mass spectrometry, and phthalate concentrations were determined by capillary gas-liquid chromatography. More than 14 compounds were found including diethyl phthalate, ethyl butyl phthalate, dibutyl phthalate, and di-2-ethylhexyl phthalate, phthalates with normal C4-C12 chains, phthalates partially esterified with methanol, and others, at total concentrations up to 0.4 mg/l. Possible reasons for presence of phthalates in oceans, sometimes in high concentrations, are discussed.