233 resultados para Mass-spectrometric Determination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been recognized that the transition from the last glacial to the present interglacial was punctuated by a brief and intense return to cold conditions. This extraordinary event, referred to by European palynologists as the Younger Dryas, was centered in the northern Atlantic basin. Evidence is accumulating that it may have been initiated and terminated by changes in the mode of operation of the northern Atlantic Ocean. Further, it appears that these mode changes may have been triggered by diversions of glacial meltwater between the Mississippi River and the St. Lawrence River drainage systems. We report here Accelerator Mass Spectrometry (AMS) radiocarbon results on two strategically located deep-sea cores. One provides a chronology for surface water temperatures in the northern Atlantic and the other for the meltwater discharge from the Mississippi River. Our objective in obtaining these results was to strengthen our ability to correlate the air temperature history for the northern Atlantic basin with the meltwater history for the Laurentian ice sheet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foraminiferal abundance, 14C ventilation ages, and stable isotope ratios in cores from high deposition rate locations in the western subtropical North Atlantic are used to infer changes in ocean and climate during the Younger Dryas (YD) and Last Glacial Maximum (LGM). The d18O of the surface dwelling planktonic foram Globigerinoides ruber records the present-day decrease in surface temperature (SST) of ~4°C from Gulf Stream waters to the northeastern Bermuda Rise. If during the LGM the modern d18O/salinity relationship was maintained, this SST contrast was reduced to 2°C. With LGM to interglacial d18O changes of at least 2.2 per mil, SSTs in the western subtropical gyre may have been as much as 5°C colder. Above ~2.3 km, glacial d13C was higher than today, consistent with nutrient-depleted (younger) bottom waters, as identified previously. Below that, d13C decreased continually to -0.5 per mil, about equal to the lowest LGM d13C in the North Pacific Ocean. Seven pairs of benthic and planktonic foraminiferal 14C dates from cores >2.5 km deep differ by 1100 ± 340 years, with a maximum apparent ventilation age of ~1500 years at 4250 m and at ~4700 m. Apparent ventilation ages are presently unavailable for the LGM < 2.5 km because of problems with reworking on the continental slope when sea level was low. Because LGM d13C is about the same in the deep North Atlantic and the deep North Pacific, and because the oldest apparent ventilation ages in the LGM North Atlantic are the same as the North Pacific today, it is possible that the same water mass, probably of southern origin, flowed deep within each basin during the LGM. Very early in the YD, dated here at 11.25 ± 0.25 (n = 10) conventional 14C kyr BP (equal to 12.9 calendar kyr BP), apparent ventilation ages <2.3 km water depth were about the same as North Atlantic Deep Water today. Below ~2.3 km, four YD pairs average 1030 ± 400 years. The oldest apparent ventilation age for the YD is 1600 years at 4250 m. This strong contrast in ventilation, which indicates a front between water masses of very different origin, is similar to glacial profiles of nutrient-like proxies. This suggests that the LGM and YD modes of ocean circulation were the same.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic and planktonic 14C ages are presented for the last glacial termination from marine sediment core VM21-30 from 617 m in the eastern equatorial Pacific. The benthic-planktonic 14C age differences in the core increased to more than 6000 years between Heinrich 1 time and the end of the Younger Dryas period. Several replicated 14C ages on different benthic and planktonic species from the same samples within the deglacial section of the core indicate a minimal amount of bioturbation. Scanning electron microscopy reveals no evidence of calcite alteration or contamination. The oxygen isotope stratigraphy of planktonic and benthic foraminifera does not indicate anomalously old (glacial age) values, and there is no evidence of a large negative stable carbon isotope excursion in benthic foraminifera that would indicate input of old carbon from dissociated methane. It appears, therefore, that the benthic 14C excursion in this core is not an artifact of diagenesis, bioturbation, or a pulse of methane. A benthic D14C stratigraphy reconstructed from the 14C ages from the deglacial section of VM21-30 appears to match that of Baja margin core MV99-MC19/GC31/PC08 (705 m), but the magnitude of the low-14C excursion is much larger in the VM21-30 record. This would seem to imply that the VM21-30 core was closer to the source of 14C-depleted waters during the deglaciation, but the source of this CO2 remains elusive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present sea surface temperature (SST) records with centennial-scale resolution from the Bay of Plenty, north of New Zealand. Foraminiferal assemblage-based paleo-SST estimates provide a deglacial record of SST since 16.5 14C ka. Average Holocene SSTs are 15.6°C for winter and 20.3°C for summer, whereas average glacial values were 14.2°C for winter and 19.5°C for summer. Compared to modern time, cooling of SSTs at the Last Glacial Maximum (LGM) was ~0.9°C in winter and ~1.5°C in summer. The shift from glacial to Holocene temperatures began at 14.25 14C ka, warming by ~2°C until 12.85 14C ka when temperatures dipped back to glacial values at 11.65 14C ka. The timing of this return to glacial-like SST correlates well with the Antarctic Cold Reversal (ACR) rather than the Younger Dryas and documents that the influence of the ACR extended into the subtropics of the Southern Hemisphere, at least in this region of the southwest Pacific. By 10.55 14C ka an SST maximum in summer SSTs of up to 3°C warmer than modern occurred (?24°C), after which SST dropped, remaining at present-day temperatures since 9.3 14C ka. This early Holocene climatic optimum has been widely noted in the Southern Ocean, and this record indicates that this phenomenon also extended into the subtropics to the north of New Zealand.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a wider paleoclimate and paleoceanographic study of Holocene-upper Pleistocene laminated sediments from the eastern equatorial Pacific and Peru continental margin, we completed 32 accelerator mass spectrometry (AMS) 14C dates from cores recovered during Ocean Drilling Program (ODP) Leg 201. Sample preparation and measurement were carried out at the ANTARES AMS facility, Australian Nuclear Science and Technology Organisation (ANSTO), in Sydney, Australia (Lawson et al., 2000, doi:10.1016/S0168-583X(00)00276-7; Fink et al., 2004, doi:10.1016/j.nimb.2004.04.025). Although the sediments are predominantly diatomaceous oozes (D'Hondt, Jørgensen, Miller, et al., 2003, doi:10.2973/odp.proc.ir.201.2003), they contain sufficient inorganic (e.g., foraminifer tests and nannofossil plates) and organic (Meister et al., 2005, doi:10.2973/odp.proc.sr.201.105.2005) carbon to allow 14C dating. These dates permitted us to reconstruct a history of sediment accumulation over the past 20 k.y., particularly on the Peru continental margin. In this report we present 14C AMS dates and other pertinent data from cores from Sites 1227, 1228, and 1229 collected during Leg 201 at the Peru continental margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An additional Heinrich ice-rafting event is identified between Heinrich events 5 and 6 in eight cores from the Labrador Sea and the northwest Atlantic Ocean. It is characterized by sediment rich in detrital carbonate (40% CaCO3) with high concentration of floating dropstones, high coarse-fraction (% > 150 µm) content, and has a sharp contact with the underlying but grades into the overlying hemipelagic sediment. It also shows lighter d18ONpl values, indicating freshening due to iceberg rafting and/or meltwater discharge. This event is correlated with Dansgaard-Oeschger event 14 and interpreted as an additional Heinrich event, H5a. The thickness of H5a in the Labrador Sea reaches up to 220 cm. This additional Heinrich event has also been reported in cores PS2644 and SO82-5 from the northern North Atlantic. With the recognition of H5a the temporal spacing between Heinrich events 1 to 6 becomes more uniform (~7 ka).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate thefirst and filtering different volumes of water in order to evaluate the second.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleoenvironmental studies and climate models demonstrate that fluvial runoff and moisture availability in the Caribbean hinterland react very sensitively to climatic variations. Late Pleistocene and Holocene climate records document pronounced dry and wet periods over tropical South America mainly caused by shifts of the Intertropical Convergence Zone (ITCZ). However, forcing mechanisms for changes in the ITCZ position remain controversial. Here we present high-resolution foraminiferal Ba/Ca and d18Oseawater records from a core located within the Orinoco River outflow documenting abrupt hydrological changes in the Orinoco catchment area during the deglacial and Holocene. Our data, obtained from the surface-dwelling foraminifera Globigerinoides ruber (pink), show an abrupt increase in Ba/Ca ratios in the early Holocene, starting ~600 yr after the end of the Younger Dryas (YD) cold interval at ca. 10.8 ka and suggesting a massive reorganization of moisture sources in northern South America. In contrast, the salinity dependent d18Oseawater from the same samples shows a gradual decrease starting at the end of the YD. The offset of our Ba/Ca peak excludes meltwater release in conjunction with the northern Andean glacier retreat well before the end of the YD as a forcing mechanism. We suggest that the Ba/Ca record documents an abrupt increase in Ba-rich waters of a northern Andean source caused by the insolation-driven shift of the ITCZ and/or enhanced monsoon activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of the 230Th normalization method to estimate sediment burial fluxes in six cores from the eastern equatorial Pacific (EEP) reveals that bulk sediment and organic carbon fluxes display a coherent regional pattern during the Holocene that is consistent with modern oceanographic conditions, in contrast with estimates of bulk mass accumulation rates (MARs) derived from core chronologies. Two nearby sites (less than 10 km apart), which have different MARs, show nearly identical 230Th-normalized bulk fluxes. Focusing factors derived from the 230Th data at the foot of the Carnegie Ridge in the Panama Basin are >2 in the Holocene, implying that lateral sediment addition is significant in this part of the basin. New geochemical data and existing literature provide evidence for a hydrothermal source of sediment in the southern part of the Panama Basin and for downslope transport from the top of the Carnegie Ridge. The compilation of core records suggests that sediment focusing is spatially and temporally variable in the EEP. During oxygen isotope stage 2 (OIS 2, from 13-27 ka BP), focusing appears even higher compared to the Holocene at most sites, similar to earlier findings in the eastern and central equatorial Pacific. The magnitude of the glacial increase in focusing factors, however, is strongly dependent on the accuracy of age models. We offer two possible explanations for the increase in glacial focusing compared to the Holocene. The first one is that the apparent increase in lateral sediment redistribution is partly or even largely an artifact of insufficient age control in the EEP, while the second explanation, which assumes that the observed increase is real, involves enhanced deep sea tidal current flow during periods of low sea level stand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMS radiocarbon ages have been determined on terrestrial macrofossils selected from the annually laminated sediments of lake Holzmaar (Germany). The radiocarbon chronology of this lake covers the last 12.6 ka. Comparison of the radiocarbon dated varve chronology with tree ring data shows that an additional 878 years have to be added to the varve chronology. The corrected 14C varve chronology of Holzmaar reaches back to ca. 13.8 ka cal. BP and compares favourably with the results from Soppensee (Switzerland) (Hajdas et al., 1993, doi:10.1007/BF00209748). The corrected ages for the onset and the end of the Younger Dryas biozone are 11,940 cal. BP and 11,490 cal. BP, respectively. The ash layer of the Laacher See volcanic eruption is dated at 12,201 ± 224 cal. BP and the Ulmener Tephra layer is dated at 10,904 cal. BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of five sediment cores from three sites, the Arctic Ocean, the Fram Strait and the Greenland Sea, yielded evidence for geomagnetic reversal excursions and associated strong lows in relative palaeointensity during oxygen isotope stages 2 and 3. A general similarity of the obtained relative palaeointensity curves to reference data can be observed. However, in the very detail, results from this high-resolution study differ from published records in a way that the prominent Laschamp excursion is clearly characterized by a significant field recovery when reaching the steepest negative inclinations, whereas only the N-R and R-N transitions are associated with the lowest values. Two subsequent excursions also reach nearly reversed inclinations but without any field recovery at that state. A total of 41 accelerator mass spectrometry (AMS) 14C ages appeared to allow a better age determination of these three directional excursions and related relative palaeointensity variations. However, although the three sites yielded more or less consistent chronological as well as palaeomagnetic results a comparison to another site, PS2644 in the Iceland Sea, revealed significant divergences in the ages of the geomagnetic field excursions of up to 4 ka even on basis of uncalibrated AMS 14C ages. This shift to older 14C ages cannot be explained by a time-transgressive character of the excursions, because the distance between the sites is small when compared with the size of and the distance to the geodynamo in the Earth's outer core. The most likely explanation is a difference of reservoir ages and/or mixing with old 14C-depleted CO2 from glacier ice expelled from Greenland at site PS2644.