212 resultados para Lead magnesium niobate
Resumo:
Within the framework of the Baikal Drilling Project (BDP), a 192 m long sediment core (BDP-96-1) was recovered from the Academician Ridge, a submerged topographic high between the North and Central Basins of Lake Baikal. Sedimentological, clay mineralogical and geochemical investigations were carried out on the core interval between 90 and 124 m depth, corresponding to ca. 2.4-3.4 Ma. The aim was to reconstruct the climatic and tectonic history of the continental region during the intensification of Northern Hemisphere glaciation in Late Pliocene time. A major climate change occurred in the Lake Baikal area at about 2.65 Ma. Enhanced physical weathering in the catchment, mirrored in the illite to smectite ratio, and temporarily reduced bioproduction in the lake, reflected by the diatom abundance, evidence a change towards a colder and more arid climate, probably associated with an intensification of the Siberian High. In addition, the coincident onset of distinct fluctuations in these parameters and in the Zr/Al ratio suggests the beginning of the Late Cenozoic high amplitude climate cycles at about 2.65 Ma. Fluctuations in the Zr/Al ratio are traced back to changes in the aeolian input, with high values in warmer, more humid phases due to a weaker Siberian High. Assuming that the sand content in the sediment reflects tectonic pulses, the Lake Baikal area was tectonically active during the entire investigated period, but in particular around 2.65 Ma. Tectonic movements have likely led to a gradual catchment change since about 3.15 Ma from the western towards the eastern lake surroundings, as indicated in the geochemistry and clay mineralogy of the sediments. The strong coincidence between tectonic and climatic changes in the Baikal area hints at the Himalayan uplift being one of the triggers for the Northern Hemisphere Glaciation.
Resumo:
The processes of formation of iron-manganese nodules and crusts have been studied on an example of the Eningi-Lampi lake, Central Karelia, where the relationships between the source of the ore, sedimentary materials and areas of their accumulation prove relatively simple and apparent. Nodules and crusts are composed mostly by birnessite, amorphous hydrous ferric oxides and hydro-goethite. They occur, as a rule, on the surface of relatively coarse-grained sediments, at the ground-water interface. Considerably in a lesser extent are found the nodules in the upper part (0ó5 cm) of the red-brown flooded watery mud covering dark-green, black muds. The nucleus of nodules, or the basis of crusts of iron-manganese hydroxides are various, frequently altered, fragments of rocks, sometimes pieces of wood. Distribution of Mn and Fe in sediments and waters of the lake is considered. It is shown that the Mn/Fe ratio decreases considerably in waters, sediments and nodules of the lake while moving off a distance from the source. The main role in the process of formation of iron-manganese nodules belongs to the selective chemosorption interaction (with auto-catalytic oxidation) of component-bearing solutions with active surfaces.