819 resultados para Late Glacial Maximum
Resumo:
The north Icelandic shelf is partly distinguished by the Tjörnes Fracture Zone featuring numerous active basins in a mud-dominated shelf environment. Late Glacial and Holocene high-resolution sedimentary records from this area have been studied with tephrochronology as the main tool for correlation and for exact timing of palaeoceanographic events in the area. Data from three new piston cores from the shelf demonstrate the importance of tephra markers for the first chronological evaluation and correlation of the cores. The correlation is extended with lithological logs and with magnetic susceptibility records. A detailed multidisciplinary study (including biostratigraphy and tephrochronology) of a late Holocene record of predominantly muddy sediments at the same location demonstrates that marked variations in the distribution of water masses occurred repeatedly through the last 4500 cal. yr. Of special interest is the exact timing of a marked drop in sea-surface temperature in the area, indicated by ice rafting debris concentration, to about 50 years before the Hekla 3 eruption, which occurred at 2980 cal. yr BP. This appears to predate most records of a general cooling event in NW Europe by a couple of centuries. Two different possible age models, one based on 14C dates combined with tephra markers and one based on tephra markers alone, are discussed in context with the problem of different marine reservoir ages of the water masses in the area.
Resumo:
To date, work on the Great Bahama Bank's western, leeward margin has centred chiefly on seismic-scale expressions of carbonate sequences and systems tracts. However, periplatform, slope sediments also exhibit very well developed cyclicity on scales of decimetres to several metres. It is these small-scale, high-frequency cycles within the larger-scale facies successions of the Quaternary which form the main topic of this paper. Previous studies have shown that the small-scale cycles correlate to the orbitally forced, high-frequency sea-level changes. Therefore these cycles should indicate how sea level has affected the slope development and thus platform-margin evolution during this period. Through detailed, high-resolution sequence stratigraphy of the Great Bahama Bank's leeward margin, obtained via delta18O isotope and mineralogical (XRD) analyses, confined by U/Th dating and nannofossil bioevents, a greater understanding of the bedding geometries within the Pleistocene-Holocene seismic sequences and clues as to the nature of the slope development has been achieved. The high-resolution seismic profiles indicate that since the Plio-Pleistocene change in geometry, in which the Great Bahama Bank developed into a rimmed platform, continued steepening and subsequent progradation of the leeward margin has typified slope development during the Quaternary, which is described as an accretionary slope. However, on the basis of our observations we conclude that only the early to lower middle Pleistocene section (isotope stages 45-20) and the Holocene (isotope stage 1) of the leeward margin is accretionary. This indicates that a degree of erosion and/or by-passing has occurred on the leeward margin since the lower middle Pleistocene (isotope stage 19). During the first part of this period (isotope stages 19-12) erosion and/or by-passing occurred in the middle to lower slope regions and toe-of-slope. By the end of the upper middle to late Pleistocene phase (isotope stages 11-2) erosion also occurred on the upper slope. This erosion by currents at the toe-of-slope and oversteepening of the upper and middle slopes have led to back-cutting upslope and resulted in the progressive retreat of the toe-of-slope towards the platform to the east. However, the rise in sea level since the Last Glacial Maximum to its present-day level has allowed high productivity on the platform top during the Holocene and the deposition of a thick sediment wedge on the slope and sedimentation across the entire leeward flanks. This has led to the redevelopment of an accretionary slope and continued westward progradation of the Great Bahama Bank's western, leeward margin.
Resumo:
The hydrogen isotopic composition of plant leaf-wax n-alkanes (dDwax) is a novel proxy for estimating dD of past precipitation (dDp). However, vegetation life-form and relative humidity exert secondary effects on dDwax, preventing quantitative estimates of past dDp. Here, we present an approach for removing the effect of vegetation-type and relative humidity from dDwax and thus for directly estimating past dDp. We test this approach on modern day (late Holocene; 0-3 ka) sediments from a transect of 9 marine cores spanning 21°N-23°S off the western coast of Africa. We estimate vegetation type (C3 tree versus C4 grass) using d13C of leaf-wax n-alkanes and correct dDwax for vegetation-type with previously-derived apparent fractionation factors for each vegetation type. Late Holocene vegetation-corrected dDwax (dDvc) displays a good fit with modern-day dDp, suggesting that the effects of vegetation type and relative humidity have both been removed and thus that dDvc is a good estimate of dDp. We find that the magnitude of the effect of C3 tree - C4 grass changes on dDwax is small compared to dDp changes. We go on to estimate dDvc for the mid-Holocene (6-8 ka), the Last Glacial Maximum (LGM; 19-23 ka) and Heinrich Stadial 1 (HS1; 16-18.5 ka). In terms of past hydrological changes, our leaf-wax based estimates of dDp mostly reflect changes in wet season intensity, which is complementary to estimates of wet season length based on leaf-wax d13C.
Resumo:
Late Quaternary oxygen (d18O) and carbon (d13C) isotopic records for the benthic foraminifer Uvigerina and the planktonic foraminifer Globigerina bulloides are presented for the upper 20 meters composite depth sediment sequence of Ocean Drilling Program Site 1014, Tanner Basin, in the outer California Borderland province. The benthic oxygen isotopic record documents a continuous >160-k.y. sequence from marine isotope Stage (MIS) 6 to the present day. The record closely resembles other late Quaternary North Pacific benthic isotope records, as well as the well-dated deep-sea sequence (SPECMAP), and thus provides a detailed chronologic framework. Site 1014 provides a useful record of the California response to climate change as it enters the southern California Border-land. Sedimentation rates are relatively constant and high (~11.5 cm/k.y. ). The planktonic foraminiferal record is well pre-served except during marine isotope Substages 5b and 5d, when normally high G. bulloides abundance is strongly diminished as a result of dissolution. The planktonic oxygen isotopic shift of ~3 per mil between the last glacial maximum and the Holocene suggests a surface water temperature shift of <7°C, similar to estimates from Hole 893A (Leg 146) to the north. Unlike Santa Barbara Basin, G. bulloides d18O values during the last interglacial (MIS 5) at Site 1014 were significantly higher than during the Holocene. In particular, marine isotope Substage 5e (Eemian) was ~0.8 per mil higher. This is unlikely to reflect a cooler Eemian but is instead the result of preferential dissolution of thin-shelled (low d18O) specimens during this interval. In this mid-depth basin, a large benthic d18O shift during Termination I suggests dramatic temperature and salinity changes in response to switches in the source of North Pacific Intermediate Water. Although d13C values of the planktonic foraminifer G. bulloides are in disequilibria with seawater and hence interpretations are limited, the G. bulloides record exhibits several negative d13C excursions found at other sites in the region (Sites 1017 and 893). This indicates a response of G. bulloides d13C to regional surface water processes along the southern California margin. A general increase in benthic carbon isotopic values (-1.75 per mil to -0.75 per mil) in Tanner Basin during the last 200 k.y. is overprinted with smaller fluctuations correlated with climate change. The coolest intervals during the last glacial maximum (MISs 2 and 4) exhibit lower benthic d13C values, which correlate with global 13C shifts. The opposite relationship is exhibited during the last interglacial before 85 ka, when lower benthic d13C values are associated with warmer intervals (marine isotope Substages 5c and 5e) of the last interglacial. These time intervals were also marked by decreased intermediate water ventilation. Increased dissolution and organic accumulation during Substages 5b and 5d are anticorrelated with the benthic d13C record. These results suggest that a delicate balance in intermediate water d13C has existed between the relative influences of global 13C and regional ventilation changes at the 1165-m water depth of Site 1014.