734 resultados para FLANK


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paleomagnetic measurement procedure at Site 503 was similar to that described for Site 502 (See preceding chapter). Each core section was measured with the longcore spinner magnetometer at 10-cm intervals. In addition, one or more discrete samples were taken from each core section for measurement of the total magnetic vector and its stability against progressive AF demagnetization. There were noteworthy differences in conditions at Site 503, however, that affected the quality and interpretation of the magnetic data and require comment. The most serious problem we encountered was the presence of rust scale from the drill string. Although the dark flecks typically were concentrated near the top of every recovered sediment core, they also smeared down a meter or more between the core liner and sediment, even when the sediment showed no indication of drilling disturbance. Individual rust scales proved to be highly magnetic - presumably because they incorporate small pieces of unoxidized metal. The anomalously high remanent intensities, several orders of magnitude above the uncontaminated sediment values, and scattered remanent directions observed in long-core magnetic measurements on many cores from Site 503 could be attributed to the presence of rust scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements were made of the magnetic properties of 13 sediment samples from cores spanning the entire depth of Hole 503A. The principal aim was to make a preliminary assessment of the magnetic fabric of material obtained from hydraulic piston coring (HPC) which, though considerably bioturbated, might retain substantial traces of any depositional alignment of magnetic grains. Earlier measurements on Deep Sea Drilling Project cores (Rees, 1971; Rees and Frederick, 1974; Hailwood and Sayre, 1979) suggested that the improved HPC sampling technique should, other things being equal, provide good magnetic fabric information. The Hole 503A sediments were known from shipboard measurements to possess comparatively strong stable remanence and therefore seemed likely subjects for this assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution, biomass, and diversity of living (Rose Bengal stained) deep-sea benthic foraminifera (>30 µm) were investigated with multicorer samples from seven stations in the Arabian Sea during the intermonsoonal periods in March and in September/October, 1995. Water depths of the stations ranged between 1916 and 4425 m. The distribution of benthic foraminifera was compared with dissolved oxygen, % organic carbon, % calcium carbonate, ammonium, % silica, chloroplastic pigment equivalents, sand content, pore water content of the sediment, and organic carbon flux to explain the foraminiferal patterns and depositional environments. A total of six species-communities comprising 178 living species were identified by principal component analysis. The seasonal comparison shows that at the western stations foraminiferal abundance and biomass were higher during the Spring Intermonsoon than during the Fall Intermonsoon. The regional comparison indicates a distinct gradient in abundance, biomass, and diversity from west to east, and for biomass from north to south. Highest values are recorded in the western part of the Arabian Sea, where the influence of coastal and offshore upwelling are responsible for high carbon fluxes. Estimated total biomass of living benthic foraminifera integrated for the upper 5 cm of the sediment ranged between 11 mg Corg m**-2 at the southern station and 420 mg Corg m**-2 at the western station. Foraminifera in the size range from 30 to 125 ?m, the so-called microforaminifera, contributed between 20 and 65% to the abundance, but only 3% to 28% to the biomass of the fauna. Highest values were found in the central and southern Arabian Sea, indicating their importance in oligotrophic deep-sea areas. The overall abundance of benthic foraminifera is positively correlated with oxygen content and pore volume, and partly with carbon content and chloroplastic pigment equivalents of the sediment. The distributional patterns of the communities seem to be controlled by sand fraction, dissolved oxygen, calcium carbonate and organic carbon content of the sediment, but the critical variables are of different significance for each community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four boreholes, drilled a few tens of meters into igneous basement on the eastern flank of the Juan de Fuca Ridge during ODP Leg 168, were sealed and instrumented for long-term monitoring to observe the hydrologic state of young sediment-sealed oceanic crust. The thermal regime is dominated by the effects of rapid fluid circulation in uppermost igneous basement driven by very small non-hydrostatic pressure gradients. Upper basement temperatures are uniform laterally between pairs of holes over distances of hundreds of meters to kilometers. In the case of two holes drilled into a sediment-buried basement ridge and adjacent valley, basement temperatures differ by less than 2 K despite the 2.2 km lateral separation of the sites and the 2.5:1 contrast in sediment cover thickness. Under conductive conditions, upper basement temperatures would differ by roughly 50 K. By comparison with modeling results, the observed degree of isothermality suggests a fluid flux of at least 10**-6 m/s (30 m/yr), and an effective permeability in the range of 10**-10 to 10**-9 m**2 in the uppermost igneous crust. The pressure difference available to drive this rapid flux between the ridge and valley, estimated by comparing the observed pressures via the isothermal upper basement hydrostat that is inferred to connect the two sites, is small (~2 kPa) and also suggests high permeability. Relative to the hydrostats defined by the local conductive sediment geotherms, substantial super-hydrostatic pressure (+18 kPa) is present within the buried basement ridge, and sub-hydrostatic pressure is present in the adjacent valley (-26 kPa). Such pressure differentials are the direct consequence of the advection-dominated thermal regime and small pressure losses in high-permeability basement, and are available to drive fluid seepage through sediment sections vertically up above and horizontally away from buried ridges, and down above valleys. No constraints are provided by any of the observations on the depth in the crust to which thermally or chemically significant flow might extend, although just as in the overlying sediments, the pattern of deep flow may be affected by the near-isothermal and near-hydrostatic conditions present in the permeable uppermost crustal section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Deep Sea Drilling Project Leg 73 (South Atlantic), basaltic pillow lava, flows, and sills were encountered in Holes 519A, 520, 522B, and 524. Paleomagnetic data indicate that the basalts from Holes 519A (magnetic Anomaly 51) and 522B (Anomaly 16) have ages of about 12 m.y. and about 38 m.y., respectively. The major- and trace- (including rare-earth-) element characteristics of the Hole 519A basalts (a total of 27 m) demonstrate that these basalts are typical normal-type mid-ocean-ridge basalts (N-type MORB). In composition the basalts overlap olivine tholeiites from other normal Mid-Atlantic Ridge segments. Both the spectra of incompatible, or less-hygromagmatophile elements (such as Ti, V, Y, and Zr) and REE abundances indicate that these basalts are the result of a low-pressure fractionation of olivine, spinel, and Plagioclase prior to eruption. In Hole 520 only 1.7 m of basalt were recovered from a total drilling depth of 10.5 m. These pillow basalts crystallized from fairly evolved (N-type MORB) tholeiitic melts. In total, 19 m of basaltic pillow lavas and flows were penetrated in Hole 522B. Thirteen cooling units were distinguished on the basis of glassy margins and fine quench textures. In contrast to Holes 519A and 520, the basalts of the Hole 522B ridge section can be divided into two major groups of tholeiites: (1) Cooling Units 1 through 12 and (2) Cooling Unit 13. The basalts in this ridge section are also N-type MORBs but are generally more differentiated than those of Holes 519A and 520. The lowermost basalts (Cooling Unit 13) have the most primitive composition and make up a compositional group distinct from the more evolved basalts in the twelve units above it. Hole 524 was drilled on the south flank of the Walvis Ridge and thus provided samples from a more complex part of the South Atlantic seafloor. Three different basaltic rock suites, interlayered with volcanic detrital sediments, were encountered. The rock suites are, from top to bottom, an alkali basaltic pillow lava; a 16-m-thick alkaline diabase sill with an age of about 65 m.y. (according to K-Ar dating and planktonic foraminifers); and a second sill that is approximately 9 m thick, about 74 m.y. in age, and tholeiitic in composition, thus contrasting strongly with the overlying alkaline rocks. The alkali basalts of Hole 524 show chemical characteristics that are very similar to the basaltic lavas of the Tristan da Cunha group volcanoes, which are located approximately 400 km east of the Mid-Atlantic Ridge crest. Thus, the Walvis Ridge may plausibly be interpreted as a line of hot-spot alkaline volcanoes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses by atomic absorption spectrophotometry and spark-source mass spectrography of 25 basal metalliferous sediment units from widely spaced locations on the western flank of the East Pacific Rise show that the deposits are enriched relative to normal pelagic sediment in Fe, Mn, Ni, Cu, Pb, Zn, and many trace elements. The elements are partitioned differently between the various mineralogic constituents of the sediment, with Fe and Mn largely in separate phases and many of the remaining elements primarily associated with reducible ferromanganese oxide minerals but also with iron minerals and other phases. Most of the iron in the deposits is probably of volcanic origin, and much of the manganese and minor elements is derived from sea water. The bulk composition of the deposits varies with age; this is thought to be due to variations in the incidence of volcanic activity at the East Pacific Rise crest where the deposits were formed.