222 resultados para Education, Language and Literature|Education, Reading|Language, Rhetoric and Composition
Resumo:
1. Biological interactions can alter predictions that are based on single-species physiological response. It is known that leaf segments of the seagrass Posidonia oceanica will increase photosynthesis with lowered pH, but it is not clear whether the outcome will be altered when the whole plant and its epiphyte community, with different respiratory and photosynthetic demands, are included. In addition, the effects on the Posidonia epiphyte community have rarely been tested under controlled conditions, at near-future pH levels. 2. In order to better evaluate the effects of pH levels as projected for the upcoming decades on seagrass meadows, shoots of P. oceanica with their associated epiphytes were exposed in the laboratory to three pH levels (ambient: 8.1, 7.7 and 7.3, on the total scale) for 4 weeks. Net productivity, respiration, net calcification and leaf fluorescence were measured on several occasions. At the end of the study, epiphyte community abundance and composition, calcareous mass and crustose coralline algae growth were determined. Finally, photosynthesis vs. irradiance curves (PE) was produced from segments of secondary leaves cleaned of epiphytes and pigments extracted. 3. Posidonia leaf fluorescence and chlorophyll concentrations did not differ between pH treatments. Net productivity of entire shoots and epiphyte-free secondary leaves increased significantly at the lowest pH level yet limited or no stimulation in productivity was observed at the intermediate pH treatment. Under both pH treatments, significant decreases in epiphytic cover were observed, mostly due to the reduction of crustose coralline algae. The loss of the dominant epiphyte producer yet similar photosynthetic response for epiphyte-free secondary leaves and shoots suggests a minimal contribution of epiphytes to shoot productivity under experimental conditions. 4. Synthesis. Observed responses indicate that under future ocean acidification conditions foreseen in the next century an increase in Posidonia productivity is not likely despite the partial loss of epiphytic coralline algae which are competitors for light. A decline in epiphytic cover could, however, reduce the feeding capacity of the meadow for invertebrates. In situ long-term experiments that consider both acidification and warming scenarios are needed to improve ecosystem-level predictions.
Resumo:
Materials of polygon exploration during Cruise 41 of R/V Dmitry Mendeleev showed that diagenetic and sedimentary-diagenetic nodules close in morphology, texture, and composition vary greatly in size and productivity. Local variations in productivity of this nodule type in pelagic areas of the Pacific Ocean are closely connected with thickness of underlying clayey-radiolarian oozes.
Resumo:
Hess Rise, in the western Pacific Ocean, formed in the mid-Cretaceous south of the equator and moved north with the Pacific Plate (Lancelot and Larson, 1975; Lancelot, 1978; Valuer et al., 1979). Southern Hess Rise was a volcanic archipelago, at least until late Albian time, after which it subsided to become one of the major aseismic rises in the present western Pacific. A second pulse of volcanic activity apparently occurred in the Campanian-Maastrichtian interval, which may be related to tectonic uplift of Hess Rise (Valuer and Jefferson, this volume). Trachytic rocks underlie 412 meters of carbonate sediments at Site 465 on southern Hess Rise. Twenty-four meters of trachyte were recovered from a 64-meter cored interval. The rocks are relatively homogeneous in texture, color, and composition, indicating that the cored sequence was probably part of only one magmatic event (Seifert et al., this volume). Large (> 5-mm) vesicles and oxidized parts of some flows suggest subaerial or shallow-water extrusions. The rocks are high in silica and relatively rich in Na2O, K2O, and light rare-earth elements. The upper part of the volcanic-rock sequence is a breccia, the fragments cemented by calcite, pyrite, and rare barite. Some of the resultant veins are more than 1 cm thick. In addition to the veins, many vesicles are also filled with these minerals. Brecciation and the number and thickness of veins decrease with depth in the hole. The degree of weathering, as indicated by water content, also decreases with depth.
Resumo:
We studied variations in terrigenous (TOM) and marine organic matter (MOM) input in a sediment core on the northern Barents Sea margin over the last 30 ka. Using a multiproxy approach, we reconstructed processes controlling organic carbon deposition and investigated their paleoceanographic significance in the North Atlantic-Arctic Gateways. Variations in paleo-surface-water productivity are not documented in amount and composition of organic carbon. The highest level of MOM was deposited during 25-23 ka as a result of scavenging on fine-grained, reworked, and TOM-rich material released by the retreating Svalbard/Barents Sea ice sheet during the late Weichselian. A second peak of MOM is preserved because of sorptive protection by detrital and terrigenous organic matter, higher surface-water productivity due to permanent intrusion of Atlantic water, and high suspension load release by melting sea ice during 15.9-11.2 ka.