188 resultados para Drilling and boring machinery


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Depth fluctuations of the lysocline and calcite compensation depth (CCD) through time were investigated at Deep Sea Drilling Project Site 603, Leg 93. The CCD fell during the middle Miocene at the onset of the Western Boundary Undercurrent, correlated with seismic Horizon X. Subsequently deposited units show fluctuations of the dissolution curve. Major changes in dissolution facies correspond with lithologic boundaries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Eight-month-old blocks of the coral Porites lobata colonized by natural Hawaiian euendolithic and epilithic communities were experimentally exposed to two different aqueous pCO2 treatments, 400 ppmv and 750 ppmv, for 3 months. The chlorophyte Ostreobium quekettii dominated communities at the start and at the end of the experiment (65-90%). There were no significant differences in the relative abundance of euendolithic species, nor were there any differences in bioeroded area at the surface of blocks (27%) between pCO2 treatments. The depth of penetration of filaments of O. quekettii was, however, significantly higher under 750 ppmv (1.4 mm) than under 400 ppmv (1 mm). Consequently, rates of carbonate dissolution measured under elevated pCO2 were 48% higher than under ambient pCO2 (0.46 kg CaCO3 dissolved m2/a versus 0.31 kg /m2/a). Thus, biogenic dissolution of carbonates by euendoliths in coral reefs may be a dominant mechanism of carbonate dissolution in a more acidic ocean.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sediment samples collected at DSDP Leg 96 Mississippi Fan Sites 615, 616, 620, 621, and 623, Orca Basin Site 618, and Pigmy Basin Site 619 were analyzed for 22 major, minor, and trace elements. This study was undertaken to document the downhole variability in inorganic geochemistry between sites. The mineralogy of the clays, including those from Sites 614, 617, and 622 on the fan, was determined by X-ray diffraction to define the principal clay minerals present at the sites, examine any downhole trends in clay mineralogy, and aid in the interpretation of the geochemical signature of the sediments. Clay mineral composition at all the sites is smectite:illite:chlorite:kaolinite in the approximate percentage ratio 50:20:20:10. Geochemical results indicate only slight variation between and within the sites, with the exception of a discrete unit of carbonates that occurs near the bottom of Site 615. Variation in the major, minor, and trace element composition can be explained by a change in the relative abundance of quartz, clay minerals, and carbonates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sediment and interstitial water samples recovered during DSDP Leg 93 at Site 603 (lower continental rise off Cape Hatteras) were analyzed for a series of geochemical facies indicators to elucidate the nature and origin of the sedimentary material. Special emphasis was given to middle Cretaceous organic-matter-rich turbidite sequences of Aptian to Turanian age. Organic carbon content ranges from nil in pelagic claystone samples to 4.2% (total rock) in middle Cretaceous carbonaceous mudstones of turbiditic origin. The organic matter is of marine algal origin with significant contributions of terrigenous matter via turbidites. Maturation indices (vitrinite reflectance) reveal that the terrestrial humic material is reworked. Maturity of autochthonous material (i.e., primary vitrinite) falls in the range of 0.3 to 0.6% Carbohydrate, hydrocarbon, and microscopic investigations reveal moderate to high microbial degradation. Unlike deep-basin black shales of the South and North Atlantic, organic-carbon-rich members of the Hatteras Formation lack trace metal enrichment. Dissolved organic carbon (DOC) in interstitial water samples ranges from 34.4 ppm in a sandstone sample to 126.2 ppm in an organic-matter-rich carbonaceous claystone sample. One to two percent of DOC is carbohydratecarbon.