819 resultados para Choiyoi volcanism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A basaltic sequence of Eocene submarine-erupted pyroclastic sediments totals at least 388 m at DSDP Site 253 on the Ninetyeast Ridge. These fossiliferous hyaloclastic sediments have been erupted and fragmented by explosive volcanism (hydroexplosions) in shallow water. The occurrence of interbedded basaltic ash-fall tuffs within the younger horizons of the hyaloclastic sequence marks the emergence of some Ninetyeast Ridge volcanic vents above sea level. Considerable textural variation allows subdivision of the sequence into six informal lithostratigraphic units. Hydrothermal and diagenetic alteration has caused the complete replacement of all original glass by smectites, and the introduction of abundant zeolite and calcite cements. The major and trace element contents of the hyaloclastites vary due to the alteration, and the admixture of biogenous calcite. On a calcium carbonate-free basis systematic variations are recognisable. Mg, Ni, Cr and Cu are enriched, and Li and Zn depleted in the three older units relative to the younger three. The chemical variability is reflected by the development of saponite in the older part of the sequence and montmorillonite in the younger; and by the presence of a quartz-normative basalt flow occurring in Unit II, in contrast to the Mg-rich highly olivine-normative basalt at the base of the sequence. The younger and older parts of the sequence therefore appear to have been derived from magmas of different chemistry. The sequence, like other basaltic rocks recovered from the Ninetyeast Ridge, is enriched in the light relative to the heavy rare earth elements (REE) although the REE contents vary unsystematically with depth, probably because of the high-temperature subaqueous alteration and the presence of biogenous calcite. This REE data indicates that the Ninetyeast Ridge volcanism was different from that which produces mid-ocean ridge basalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sedimentary sequence recovered at Site 840, on the Tonga frontal-arc platform, is 597.3 m thick and is subdivided into three lithostratigraphic units. The lowermost, late Miocene Unit III is 336.8 m thick and consists of a sequence of volcaniclastic mass-flow deposits (predominantly turbidites) interbedded with pelagic/hemipelagic deposits. Unit III was deposited in the forearc basin of the Lau volcanic arc, probably on a slope dominated by mass flows that built eastward from the ridge front and across the forearc. Upward through the unit a thinning and fining of individual turbidites takes place, interpreted to reflect a reduced sediment supply and a change from large to smaller flows. Decreasing volcanic activity with time is inferred from a decrease in coarse-grained volcaniclastic content in the upper part of the unit. The majority of the turbidites show the typical Bouma-type divisions, although both high- and low-density turbidity currents are inferred. High-density turbidity currents were especially common in the lower part of the unit. Geochemical analyses of detrital glass lie mainly in the low-K tholeiite field with a compositional range from basalt to rhyolite. A coherent igneous trend indicates derivation from a single volcanic source. This source was probably situated on the rifted part of the Lau-Tonga Ridge, within the present Lau backarc basin. The initial opening of the Lau Basin may have been around 6.0 m.y. ago. The onset of more extensive rifting, approximately 5.6 m.y. ago, is reflected in an increase in the silica content of volcanic glass. At the boundary toward Unit II, at approximately 5.25 Ma, an influx of thicker bedded and coarser grained volcaniclastic material is interpreted to reflect increasing volcanism and tectonism during the final breakup of the Lau-Tonga Ridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chemical and petrologic study of rocks from Site 448 on the Palau-Kyushu Ridge is designed to answer some fundamental questions concerning the volcanic origin of remnant island arcs. According to the reconstruction of the Western Pacific prior to about 45 m.y. ago (Hilde et al., 1977), the site of the Palau-Kyushu Ridge was a major transform fault. From a synthesis of existing geological and geophysical data (R. Scott et al., this volume), it appears that the ridge originated by subduction of the Pacific plate under the West Philippine Basin. Thus the Palau-Kyushu Ridge should be a prime example of both initial volcanism of an incipient arc formed by interaction of oceanic lithospheric plates and remnant-arc volcanic evolution. The Palau-Kyushu Ridge was an active island arc from about 42 to 30 m.y. ago, after which initiation of back-arc spreading formed the Parece Vela Basin (R. Scott et al., this volume; Karig, 1975a). This spreading left the western portion of the ridge as a remnant arc that separates the West Philippine Basin from the Parece Vela Basin. In spite of numerous oceanographic expeditions to the Philippine Sea, including the two previous DSDP Legs 6 and 31 (Fischer, Heezen et al., 1971; Karig, Ingle et al., 1975), and even though the origins of inter-arc basins have been linked by various hypotheses to that of remnant island arcs (Karig, 1971, 1972, 1975a, and 1975b; Gill, 1976; Uyeda and Ben-Avraham, 1972; Hilde et al., 1977), very little hard data are available on inactive remnant arcs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot brines in depressions of the central Red Sea contain thousands of times more iron, manganese and other metals than . After removal of salts, approximately half of sediments from these depressions consists of iron hydroxides and they are enriched in zinc, copper, lead and molybdenum. Hydrothermal deposits with the same complex of metals, located along the coast of the Red Sea, are correlated with faults and may be due to occurrences of Tertiary volcanism. Brines of similar composition are known in the Cheleken Peninsula. Certain geological and geochemical data indicate that such brines are of relatively deep origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling in the Caribbean Sea during Ocean Drilling Program Leg 165 has recovered a large number of silicic tephra layers and led to the discovery of three major episodes of explosive volcanism that occurred during the last 55 m.y. on the margins of this evolving ocean basin. The earliest episode is marked by Paleocene to early Eocene explosive volcanism on the Cayman Rise, associated with activity of the Cayman arc, an island arc that was the westward extension of the Sierra Maestra volcanic arc in southern Cuba. Caribbean sediments also document a major mid- to late Eocene explosive volcanic episode that is attributed to ignimbrite-forming eruptions on the Chortis Block in Central America to the west. This event is contemporaneous with the first phase of activity of the Sierra Madre volcanic episode in Mexico, the largest ignimbrite province on Earth. In the Caribbean sediments, a Miocene episode of explosive volcanism is comparable to the Eocene event, and also attributed to sources in the Central American arc to the west. Radiometric 40Ar/39Ar dates have been obtained for biotites and sanidines from 27 tephra layers, providing absolute ages for the volcanic episodes and further constraining the geochronology of Caribbean sediments. Volcanic activity of the Cayman arc is attributed to the northward subduction of the leading edge of the oceanic plate that carried the Caribbean oceanic plateau. Although the factors generating the large episodes of Central American explosive volcanism are unclear, we propose that they are related to contemporary major readjustments of plate tectonic configuration in the Pacific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrographic and geochemical study of basalts in the Kerguelen Plateau basement revealed changes in composition and character of volcanism during development of this tectonovolcanic structure. The Kerguelen Plateau is one of the largest intraplate rises in the World Ocean. It started to form about 120 Ma ago. Age of basalts and overlying sediments shows that plateau formation was in the northwest direction. Basalts of the Kerguelen Plateau basement are products of tholeiitic melts in terms of geochemistry, but differ from mid-ocean ridge basalt (MORB). They are enriched in incompatible trace elements and rare earth elements (REE) relative to MORB, and degree of enrichment varies in basalts from different segments of the plateau. Composition of basalts does not directly depend on their age. Specific features of plateau magmatism are commonly explained in terms of a long-living deep magma plume, which variously interacted with a depleted upper mantle source at different stages of plateau formation. However, taking into account block morphology and deep structure of the plateau, one can suggest that plateau volcanism was initiated by a large fault. As the volcanism prograded to the northwest, depth of fault penetration into the mantle changed. Composition of basalts in the plateau basement was also governed by formation depth of primary melts.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galápagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galápagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206Pb/204Pb and only slightly more radiogenic 207Pb/204Pb and 208Pb/204Pb isotope ratios than the basalts. Altered samples from the subducting Galápagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galápagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galápagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galápagos Hotspot ?100 km beyond the morphological hotspot track.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The site for CRP-2, 14 km east of Cape Roberts (77.006°S; 163.719°E), was selected to overlap the early Miocene strata cored in nearby CRP-1, and to sample deeper into the east-dipping strata near the western margin ofe he Victoria Land Basin to investigate Palaeogene climatic and tectonic history. CRP-2 was cored from 5 to 57 mbsf (metres below the sea floor) (core recovery 91 %), with a deviation resulting in CRP-2A being cored at the same site. CRP-2A reached down to 624mbsf (recovery 95%), and to strata with an age of c. 33-35 Ma. Drilling took place from 16 October to 25 November 1998, on 2.0-2.2 m of sea ice and through 178 m of water. Core fractures and other physical properties, such as sonic velocity, density and magnetic susceptibility, were measured throughout the core. Down-hole logs for these and other properties were run from 63 to 167 mbsf and subsequently from 200 to 623 mbsf, although density and velocity data could be obtained only to 440 mbsf because of hole collapse. Sonic velocity averages c. 2.0 km S-1 for the upper part of the hole, but there is an sharp increase to c. 3.0 km s-1 and also a slight angular unconformity, at 306 mbsf, corresponding most likely to the early/late Oligocene boundary (c. 28-30 Ma). Velocity then increases irregularly to around 3.6 km s-1 at the bottom of the hole, which is estimated to lie 120 m above the V4/V5 boundary. The higher velocities below 306 mbsf probably reflect more extensive carbonate and common pyrite cementation, in patches, nodules, bedding-parallel masses and as vein infills. Dip of the strata also increases down-hole from 3° in the upper 300 in to over 10° at the bottom. Temperature gradient is 21° k-1. Over 2 000 fractures were logged through the hole. Borehole televiewer imagery was obtained for the interval from 200 to 440 mbsf to orient the fractures for stress field analysis. Lithostratigraphical descriptions on a scale of 1:20 are presented for the full length of the core, along with core box images, as a 200 page supplement to this issue. The hole initially passed through a layer of muddy gravel to 5.5 mbsf (Lithological Sub-Unit or LSU 1.1), and then into a Quaternary diatom-bearing clast-rich diamicton to 21 mbsf (LSU 2. l), with an interval of alternating compact diamicton and loose sand, and containing a rich Pliocene foraminiferal fauna, to 27 mbsf (LSU 2.2). The unit beneath this (LSU 3.1) has similar physical properties (sonic velocity, porosity, magnetic susceptibility) and includes diamictites of similar character to those of LSU 2.1 and 2.2, but an early Miocene (c. 19 Ma) diatom assemblage at 28 mbsf (top of LSU 3.1) shows that this sub-unit is part of the older section. The strata beneath 27 mbsf, primary target for the project, extend from early Miocene to perhaps latest Eocene age, and are largely cyclic glacimarine nearshore to offshore sediments. They are described as 41 lithological sub-units and interpreted in terms of 12 recurrent lithofacies. These are 1) mudstone, 2) inter-stratified mudstone and sandstone, 3) muddy very fine to coarse sandstone, 4) well-sorted stratified fine sandstone, 5) moderately to well-sorted, medium-grained sandstone, 6) stratified diamictite, 7) massive diamictite, 8) rhythmically inter-stratified sandstone and mudstone, 9) clast-supported conglomerate, 10) matrix-supported conglomerate, 11) mudstone breccia and 12) volcaniclastic sediment. Sequence stratigraphical analysis has identified 22 unconformity-bounded depositional sequences in pre- Pliocene strata. They typically comprise a four-part architecture involving, in ascending order, 1) a sharp-based coarse-grained unit (Facies 6,7,9 or 10), 2) a fining-upward succession of sandstones (Facies 3 and 4), 3) a mudstone interval (Facies l), in some cases coarsening upward to muddy sandstones (Facies 3), and 4) a sharp-based sandstone dominated succession (mainly Facies 4). The cyclicity recorded by the strata is interpreted in terms of a glacier ice margin retreating and advancing from land to the west, and of rises and falls in sea level. Analysis of sequence periodicity awaits afirmer chronology. However, apreliminary spectral analysis of magnetic susceptibility for a deepwater mudstone within one of the sequences (from 339 to 347 mbsf) reveals ratios between hierarchical levels that are similar to those of the three Milankovitch orbital forcing periodicities. The strata contain a wide range of fossils, the most abundant being marine diatoms. These commonly form up to 5% of the sediment, though in places the core is barren (notably between 300 and 412 mbsf). Fifty samples out of 250 reviewed were studied in detail. The assemblages define ten biostratigraphical zones, some of them based on local or as yet undescribed forms. The assemblages are neritic, and largely planktonic, suggesting that the sea floor was mostly below the photic zone throughout deposition of the corcd sequence. Calcareous nannofossils, representing incursions of ocean surface waters, are much less common (72 out of 183 samples examined) and restricted to mudstone intervals a few tens of metres thick, but are important for dating. Foraminifera are also sparse (73 out of 135 samples) and represented only by calcareous benthic species. Changing assemblages indicate a shift from inshore environments in the early Oligocenc to outer shelf in the late Oligocenc, returning to inshore in the early Miocene. Marine palynomorplis yielded large numbers of well-preserved forms from most of the 116 samples examined. The new in situ assemblagc found last year in CRP-1 is extended down into the late Oligocene and a further new assemblage is found in the early Oligoccnc. Many taxa are new, and cannot us yet contribute to an improved understanding of chronology or ecology. Marine invertebrate macrofossils, mostly molluscs and serpulid tubes, are scattered throughout the core. Preservation is good in mudstones but poor in other lithologies. Climate on land is reflected in the content of terrestrial palynomorphs, which are extremely scarce down to c. 300 mbsf. Some forms are reworked, and others represent a low growing sparse tundra with at least one species of Nothofagus. Beneath this level, a significantly greater diversity and abundance suggests a milder climate and a low diversity woody vegetation in the early Oligocene, but still far short of the richness found in known Eocene strata of the region. Sedimentary facies in the oldest strata also suggest a milder climate in the oldest strata cored, with indications of substantial glacial melt-water discharges, but are typical of a coldcr climate in late Oligocene and early Miocene times. Clast analyses from diamictites reveal weak to random fabrics, suggesting either lack of ice-contact deposition or post-depositional modification, but periods when ice grounded at the drill site are inferred from thin zones of in-situ brecciated rock and soft-sediment folding. These are more common above c. 300 mbsf, perhaps reflecting more extensive glacial advances during deposition of those strata. Erosion of the adjacent Transantarctic Mountains through Jurassic basalt and dolerite-intruded Beacon strata into basement rocks beneath is recorded by petrographical studies of clast and sand grain assemblages. Core below 310 mbsf contains a dominance of fine-grained Jurassic dolerite and basalt fragments along with Beacon-derived coal debris and rounded quartz grains, whereas the strata above this level have a much higher proportion of basement derived granitoids, implying that the large areas of the adjacent mountains had been eroded to basement by the end of the early Oligocene. There is little indication of rift-related volcanism below 310 mbsf. Above this, however, basaltic and trachytic tephras are common, especially from 280 to 200 mbsf, from 150 to 46 mbsf, and in Pliocene LSU 2.2 from 21 to 27 mbsf. The largest volcanic eruptions generated layers of coarse (up to 1 cm) trachytic pumice lapilli between 97 and 114 mbsf. The thickest of these (1.2 m at 112 mbsf) may have produced an eruptive column extending tens of km into the stratosphere. A source within a few tens of km of the drill site is considered most likely. Present age estimates for the pre-Pliocene sequence are based mainly on biostratigraphy (using mainly marine diatoms and to a lesser extent calcareous nannofossils), with the age of the tephra from 112 to 114 mbsf (21.44k0.05 Ma from 84 crystals by Ar-Ar) as a key reference point. Although there are varied and well-preserved microfossil assemblages through most of the sequence (notably of diatoms and marine palynomorphs), they comprise largely taxa either known only locally or as yet undescribed. In addition, sequence stratigraphical analysis and features in the core itself indicate numerous disconformities. The present estimate from diatom assemblages is that the interval from 27 to 130 mbsf is early Miocene in age (c. 19 to 23.5 Ma), consistent with the Ar-Ar age from 112 to 114 mbsf. Diatom assemblages also indicate that the late Oligocene epoch extends from c. 130 to 307 mbsf, which is supported by late Oligocene nannofossils from 130 to 185 mbsf. Strata from 307 to 412 mbsf have no age-diagnostic assemblages, but below this early Oligocene diatoms and nannofossils have been recovered. A nannoflora at the bottom of the hole is consistent with an earliest Oligocene or latest Eocene age. Magnetostratigraphical studies based on about 1000 samples, 700 of which have so far undergone demagnetisation treatment, have provided a polarity stratigraphy of 12 pre-Pliocene magnetozones. Samples above 270 mbsf are of consistently high quality. Below this, magnetic behaviour is more variable. A preliminary age-depth plot using the Magnetic Polarity Time Scale (MPTS) and constrained by biostratigraphical data suggests that episodes of relatively rapid sedimentation took place at CRP-2 during Oligocene times (c. 100 m/My), but that more than half of the record was lost in a few major and many minor disconformities. Age estimates from Sr isotopes in shell debris and further tephra dating are expected to lead to a better comparison with the MPTS. CRP-2/2A has recorded a history of subsidence of the Victoria Land Basin margin that is similar to that found in CIROS-170 km to the south, reflecting stability in both basin and the adjacent mountains in late Cenozoic times, but with slow net accumulation in the middle Cenozoic. The climatic indicators from both drill holes show a similar correspondence, indicating polar conditions for the Quaternary but with sub-polar conditions in the early Miocene-late Oligocene and indications of warmer conditions still in the early Oligocene. Correlation between the CRP-2A core and seismic records shows that seismic units V3 and V4, both widespread in the Victoria Land Basin, represent a period of fluctuating ice margins and glacimarine sedimentation. The next drill hole, CRP-3, is expected to core deep into V5 and extend this record of climate and tectonics still further back in time.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major element, trace element, and radiogenic isotope compositions of samples collected from Ocean Drilling Program Leg 126 in the Izu-Bonin forearc basin are presented. Lavas from the center of the basin (Site 793) are high-MgO, low-Ti, two-pyroxene basaltic andesites, and represent the products of synrift volcanism in the forearc region. These synrift lavas share many of the geochemical and petrographic characteristics of boninites. In terms of their element abundances, ratios, and isotope systematics they are intermediate between low-Ti arc tholeiites from the active arc and boninites of the outer-arc high. These features suggest a systematic geochemical gradation between volcanics related to trench distance and a variably depleted source. A basement high drilled on the western flank of the basin (Site 792) comprises a series of plagioclase-rich two-pyroxene andesites with calc-alkaline affinities. These lavas are similar to calc-alkaline volcanics from Japan, but have lower contents of Ti, Zr, and low-field-strength elements (LFSE). Lavas from Site 793 show inter-element variations between Zr, Ti, Sr, Ni, and Cr that are consistent with those predicted during crystallization and melting processes. In comparison, concentrations of P, Y, LFSE, and the rare-earth elements (REE) are anomalous. These elements have been redistributed within the lava pile, concentrating particularly in sections of massive and pillowed flows. Relative movement of these two-element groupings can be related to the alteration of interstitial basaltic andesite glass to a clay mineral assemblage by a post-eruptive process. Fluid-rock interaction has produced similar effects in the basement lavas of Site 792. In this sequence, andesites and dacites have undergone a volume change related to silica mobility. As a result of this process, some lithologies have the major element characteristics of basaltic andesite and rhyolite, but can be related to andesitic or dacitic precursors by silica removal or addition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have compiled the first stratigraphically continuous high-resolution benthic foraminiferal stable isotope record for the Paleocene from a single site utilizing cores recovered at Pacific ODP Site 1209. The long-term trend in the benthic isotope record suggests a close coupling of volcanic CO2 input and deep sea warming. Over the short-term the record is characterized by slow excursions with a pronounced periodic beat related to the short (100-kyr) and long (405-kyr) eccentricity cycle. The phase relationship between the benthic isotope record and eccentricity is similar to patterns documented for the Oligocene and Miocene confirming the role of orbital forcing as the pace maker for paleoclimatic variability on Milankovitch time scales. In addition, the record documents an unusual transient warming of 2°C coeval with a 0.6 per mil carbon isotope excursion and a decrease in carbonate content at 61.75 Ma. This event, which bears some resemblance to Eocene hyperthermals, marks the onset of a long-term decline in d13C. The timing indicates it might be related to the initiation of volcanism along Greenland margin.