994 resultados para Carbon, organic, mineral-bound
Resumo:
Based on 13 published porewater H2S and sulphate profiles the amount of H2S escaping from non-bioturbated shales varies between some few % to 45% of the amount of bacterially generated H2S. This finding permits calculation of the original organic carbon (TOCor) content of immature nonbioturbated shales using TOC and sulphur content data. In two immature non-bioturbated sequences from Hungary (Toarcian and Oligocene) the first-order correlation between HI and TOC/TOCor was found to be stronger than that between HI and TOC, indicating that sulphate reduction was the leading process both in decrease in TOC content and degradation of kerogen source potential.
Resumo:
Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.
Resumo:
Organic carbon, lead and cadmium contents of 20 sediments were determined and compared with the colony counts of anaerobic heterotrophic, anaerobic nitrogen fixing, chitinoclastic and cellulolytic bacteria. Organic carbon content, which is dependent on the sediment type, was positively correlated with lead and cadmium as well as with colony counts of all 4 physiological groups of bacteria. Even the sediments with the highest concentrations of 251.7 ppm Pb and 3.1 ppm Cd showed no reduction in their colony counts. From 2 different sediment sampIes with lead contents of 140 ppm and 21 ppm lead tolerance of the aerobic heterotrophic bacteria was investigated. However, no significant difference in lead tolerance of the 2 heterotrophic populations was found. Water from 6 stations was analysed for dissolved and particulate organic carbon, lead and cadmium. Dissolved lead concentrations were in the range of 0.2-0.5 µg/l and the particulate lead contents were between 0.05 and 4.3 µg/l. The concentrations of total lead for the stations off-shore were only one order of magnitude from the concentrations of the near-shore stations. The same phenomenon was observed for dissolved cadmium (0.02 - 0.25 µg/l) and particulate cadmium (0.003 - 0.15 µg/I) concentrations. Correlations between dissolved (1.6 - 10.8 mg/I) and particulate organic carbon (0.25 - 1.53 mg/I) with dissolved and particulate lead or cadmium were not found.
Resumo:
New data obtained in a shipboard laboratory are used to illustrate effect exerted by lithology of enclosing rock and by early diagenesis on residu¬al organic carbon content of Holocene deposits on the northwestern Bering Sea shelf. Loss of organic carbon is found to total 8-12% in the upper 10-15 cm of sediments and about 22% in the upper 1 m that agrees with data obtained for other areas by independent methods.
Resumo:
Atomic absorption spectroscopy is used to determine concentration of gold in waters of the Bering Sea and North Pacific. Distributions of gold and organic carbon in colloidal and "dissolved" fractions separated by ultrafiltration through Vladipor filters are determined. Direct evidence of gold association with colloidal matter of sea water is presented and concentrations of gold in various fractions of colloidal solutions are determined. The most important forms of occurrence of colloidal gold prove to be high molecular weight fractions, and the most important form of colloidal organic carbon (Corg) is low molecular fraction. Dissolved forms are important in the balance of gold and Corg. Variations in forms of occurrence of gold and Corg in vertical profiles are described.
Resumo:
Pleisto-Pliocene hemipelagic and diatomaceous mud was recovered from Deep Sea Drilling Project (DSDP) Sites 474 through 481 in the Gulf of California. The organic matter is mostly marine and mainly derived from diatomaceous protoplasm. We found some continental organic matter in sediments near the bottom basalts or near dolerites (Holes 474A and 478). The organic matter in most of the samples is in an early stage of evolution.
Resumo:
Six samples from Sites 1219 and 1221 ranging in age from early Eocene to early Oligocene were analyzed for freely extractable lipids to determine whether the low organic carbon (Corg) sediments of the Eocene equatorial Pacific (Corg content typically 0.03%) are appropriate for biomarker studies. Only one sample from the Oligocene equatorial Pacific (Sample 199-1219A-13H-3, 50-54 cm) contained any biomarkers of interest to paleoceanography. The only lipids identified in the remaining samples appear to be contaminants from drilling or subsequent handling. Sample 199-1219A-13H-3, 50-54 cm, contained alkenone biomarkers specific to haptophyte algae that are used for estimating past mean annual sea-surface temperature (maSST). If the Holocene calibration of maSST is appropriate for the Oligocene, the estimated equatorial temperature is >=28.3°C, or at least 3°C warmer than modern equatorial maSST at a similar longitude.
Resumo:
Results of study of bottom sediments near Iceland and on the Jan Mayen Island are reported. It was found that in recent sediments chemical elements are mainly associated with pyro- and volcanoclastics. In some areas adjusted to deep-seated faults ancient iron-manganese crusts and sediments occur. They are rich in Ni, Co, V, Cu, Mo, Cd and other elements associated with endogenic matter.