195 resultados para Acridine Orange
Resumo:
The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.
Resumo:
Subseafloor sediments harbor over half of all prokaryotic cells on Earth (Whitman et al., 1998). This immense number is calculated from numerous microscopic acridine orange direct counts (AODCs) conducted on sediment cores drilled during the Ocean Drilling Program (ODP) (Parkes et al., 1994, doi:10.1038/371410a0, 2000, doi:10.1007/PL00010971). Because these counts cannot differentiate between living and inactive or even dead cells (Kepner and Pratt, 1994; Morita, 1997), the population size of living microorganisms has recently been enumerated for ODP Leg 201 sediment samples from the equatorial Pacific and the Peru margin using ribosomal ribonucleic acid targeting catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) (Schippers et al., 2005, doi:10.1038/nature03302). A large fraction of the subseafloor prokaryotes were alive, even in very old (16 Ma) and deep (>400 m) sediments. In this study, black shale samples from the Demerara Rise (Erbacher, Mosher, Malone, et al., 2004, doi:10.2973/odp.proc.ir.207.2004) were analyzed using AODC and CARD-FISH to find out if black shales also harbor microorganisms.
Resumo:
Sediment samples ranging from 0.05 to 278 m below sea floor (mbsf) at a Northwest Pacific deep-water (5564 mbsl) site (ODP Leg 191, Site 1179) were analyzed for phospholipid fatty acids (PLFAs). Total PLFA concentrations decreased by a factor of three over the first meter of sediment and then decreased at a slower rate to approximately 30 mbsf. The sharp decrease over the first meter corresponds to the depth of nitrate and Mn(IV) reduction as indicated by pore water chemistry. PLFA-based cell numbers at site 1179 had a similar depth profile as that for Acridine orange direct cell counts previously made on ODP site 1149 sediments which have a similar water depth and lithology. The mole percentage of straight chain saturated PLFAs increases with depth, with a large shift between the 0.95 and 3.95 mbsf samples. PLFA stable carbon isotope ratios were determined for sediments from 0.05 to 4.53 mbsf and showed a general trend toward more depleted d13C values with depth. Both of these observations may indicate a shift in the bacterial community with depth across the different redox zones inferred from pore water chemistry data. The PLFA 10me16:0, which has been attributed to the bacterial genera Desulfobacter in many marine sediments, showed the greatest isotopic depletion, decreasing from -20 to -35 per mil over the first meter of sediment. Pore water chemistry suggested that sulfate reduction was absent or minimal over this same sediment interval. However, 10me16:0 has been shown to be produced by recently discovered anaerobic ammonium oxidizing (anammox) bacteria which are known chemoautotrophs. The increasing depletion in d13C of 10me16:0 with the unusually lower concentration of ammonium and linear decrease of nitrate concentration is consistent with a scenario of anammox bacteria mediating the oxidation of ammonium via nitrite, an intermediate of nitrate reduction.
Resumo:
Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH). Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6×10**10cells/cm**3). Sediment samples were obtained during RV SONNE cruises SO143-2 and SO148-1 at the crest of southern Hydrate Ridge at the Cascadia convergent margin off the coast of Oregon. Sediment cores of 20 - 40 cm length were obtained using a video-guided multiple corer from gas hydrate bearing sediments and from reference sites not enriched in methane in the surface sediments. Samples for total cell counts were obtained from 1 cm core slices, fixed with 2% formaldehyde and stored cold (4°C) and the quantification of aggregates was done via epifluorescence microscopy after staining the sediments with Acridine Orange Direct Counts (AODC) according to the method of Meyer- Reil (1983, doi:10.1007/BF00395813). Total cell counts were defined as the sum of single cells plus the aggregated cells in the syntrophic consortia. DAPI staining was used to measure ANME2/DSS aggregate sizes via epifluorescence microscopy of FISH-treated samples. For FISH, subsamples of sediment cores were sliced into 1 cm intervals and fixed for 2-3 h with 3% formaldehyde (final concentration), washed twice with 1×PBS (10 mM sodium phosphate; 130 mM NaCl), and finally stored in 1×PBS/EtOH (1:1) at -20°C.
Resumo:
Sediment whole-round cores from a dedicated hole (798B) were obtained for detailed microbiological analysis, down to 518 m below the seafloor (mbsf). These sediments have characteristic bacterial profiles in the top 6 mbsf, with high but rapidly decreasing bacterial populations (total and dividing bacteria, and concentrations of different types of viable heterotrophic bacteria) and potential bacterial activities. Rates of thymidine incorporation into bacterial DNA and anaerobic sulfate reduction are high in the surface sediments and decrease rapidly down to 3 mbsf. Methanogenesis from CO2/H2 peaks below the maximum in sulfate reduction and although it decreases markedly down the core, is present at low rates at all but one depth. Consistent with these activities is the removal of pore-water sulfate, methane gas production, and accumulation of reduced sulfide species. Rates of decrease in bacterial populations slow down below 6 mbsf, and there are some distinct increases in bacterial populations and activities that continue over considerable depth intervals. These include a large and significant increase in total heterotrophic bacteria below 375 mbsf, which corresponds to an increase in the total bacterial population, bacterial viability, a small increase in potential rates of sulfate reduction, and the presence of thermogenic methane and other gases. Bacterial distributions seem to be controlled by the availability of terminal electron acceptors (e.g., sulfate), the bioavailability of organic carbon (which may be related to the dark/light bands within the sediment), and biological and geothermal methane production. Significant bacterial populations are present even in the deepest samples (518 mbsf) and hence it seems likely that bacteria may continue to be present and active much deeper than the sediments studied here. These results confirm and extend our previous results of bacterial activity within deep sediments of the Peru Margin from Leg 112, and to our knowledge this is the first comprehensive report of the presence of active bacterial populations from the sediment surface to in excess of 500 mbsf and sediments > 4 m.y. old.
Resumo:
Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO2-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for orientation, habitat selection, predator avoidance and communication. We used an auditory choice chamber to study the influence of CO2-enriched conditions on directional responses of juvenile clownfish (Amphiprion percula) to daytime reef noise. Rearing and test conditions were based on Intergovernmental Panel on Climate Change predictions for the twenty-first century: current-day ambient, 600, 700 and 900 µatm pCO2. Juveniles from ambient CO2-conditions significantly avoided the reef noise, as expected, but this behaviour was absent in juveniles from CO2-enriched conditions. This study provides, to our knowledge, the first evidence that ocean acidification affects the auditory response of fishes, with potentially detrimental impacts on early survival.