922 resultados para Accumulation rate, n-alkane
Resumo:
The dominant forcing factors for past large-scale changes in vegetation are widely debated. Changes in the distribution of C4 plants-adapted to warm, dry conditions and low atmospheric CO2 concentrations (Collatz et al., 1998, doi:10.1007/s004420050468) -have been attributed to marked changes in environmental conditions, but the relative impacts of changes in aridity, temperature (Pagani et al., 1999, doi:10.1126/science.285.5429.876; Huang et al., 2001, doi:10.1126/science.1060143) and CO2 concentration (Cerling et al., 1993, doi:10.1038/361344a0; Kuypers et al., 1999, doi:10.1038/20659) are not well understood. Here, we present a record of African C4 plant abundance between 1.2 and 0.45 million years ago, derived from compound-specific carbon isotope analyses of wind-transported terrigenous plant waxes. We find that large-scale changes in African vegetation are linked closely to sea surface temperatures in the tropical Atlantic Ocean. We conclude that, in the mid-Pleistocene, changes in atmospheric moisture content - driven by tropical sea surface temperature changes and the strength of the African monsoon - controlled aridity on the African continent, and hence large-scale vegetation changes.
Resumo:
The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.
Resumo:
Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean (Martin et al., 1990, doi:10.1038/345156a0; Martin, 1990, doi:10.1029/PA005i001p00001). Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40 parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles (Watson et al., 2000, doi:10.1038/35037561; Kohfeld et al., 2005, doi:10.1126/science.1105375; Martínez-Garcia et al., 2009, doi:10.1029/2008PA001657; Sigman et al., 2010, doi:10.1038/nature09149; Hain et al., 2010, doi:10.1029/2010gb003790). So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (Lambert et al., 2008, doi:10.1038/nature06763; Wolf et al., 2006, doi:10.1038/nature04614) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles (Martínez-Garcia et al., 2009; Lambert et al., 2008; Wolff et al., 2006), providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.
Resumo:
In this study we investigate Pleistocene vegetation and climate change in southern East Africa by examining plant leaf waxes in a marine sediment core that receives terrestrial runoff from the Limpopo River. The plant leaf wax records are compared to a multi-proxy sea surface temperature (SST) record and pollen assemblage data from the same site. We find that Indian Ocean SST variability, driven by high-latitude obliquity, exerted a strong control on the vegetation of southern East Africa during the past 800,000 yr. Interglacial periods were characterized by relatively wetter and warmer conditions, increased contributions of C3 vegetation, and higher SST, whereas glacial periods were marked by cooler and arid conditions, increased contributions of C4 vegetation, and lower SST. We find that Marine Isotope Stages (MIS) 5e, 11c, 15e and 7a-7c are strongly expressed in the plant leaf wax records but MIS 7e is absent while MIS 9 is rather weak. Our plant leaf wax records also record the climate transition associated with the Mid-Brunhes Event (MBE) suggesting that the pre-MBE interval (430-800 ka) was characterized by higher inputs from grasses in comparison to relatively higher inputs from trees in the post-MBE interval (430 to 0 ka). Differences in vegetation and SST of southern East Africa between the pre- and post-MBE intervals appear to be related to shifts in the location of the Subtropical Front. Comparison with vegetation records from tropical East Africa indicates that the vegetation of southern East Africa, while exhibiting glacial-interglacial variability and notable differences between the pre- and post-MBE portions of the record, likely did not experience such dramatic extremes as occurred to the north at Lake Malawi.
Resumo:
Mass accumulation rates (MAR) of different components of North Pacific deep-sea sediment provide detailed information about the timing of the onset of major Northern Hemisphere glaciation that occurred at 2.65 Ma. An increase in explosive volcanism in the Kamchatka-Kurile and Aleutian arcs occured at this same time, suggesting a link between volcanism and glaciation. Sediments recovered by piston-coring techniques during ODP Leg 145 provide a unique opportunity to undertake a detailed test of this possibility. Here we use volcanic glass as a proxy for explosive volcanism and ice-rafted debris (IRD) as a proxy for glaciation. The MAR of both glass and IRD increase markedly at 2.65 Ma. Further, the flux of the volcanic glass increased just prior the flix of ice-radted material, suggesting that the cooling resulting from explosive volcanic eruptions may have been the ultimate trigger for the mid-Pliocene glacial intensification.