567 resultados para AMS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pollen diagram from the Ahlequellmoor in the Solling area shows the history of vegetation and settlement over the last 7,800 years. In the early Atlantic period mixed deciduous forest with mainly Tilia together with Ulmus and Quercus grew in the area. In the late Atlantic period Quercus became most abundant. Fagus spread in the Sub-boreal period at about 2700 B.C. Since ca. 900 B.C. the Solling was covered by beech forests with some oak. In prehistoric times woodland grazing is indicated. Only in Medieval times are two settlements in the vicinity of the Ahlequellmoor reflected in the pollen diagram. The earlier one is dated to about A.D. 750-1020, and may be connected with the former Monastery of Hethis, which is thought to have existed close to the fen from A.D. 815 to 822. The second Medieval settlement dates to the 11th-12th century. The large-scale woodland destruction of late Medieval and modern times is not clearly visible. The silvicultural measures of the last 200 years are reflected by increasing values of spruce and grassland taxa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Past sea surface temperature (SST) evolution in the Alboran Sea (western Mediterranean) during the last 50,000 years has been inferred from the study of C37 alkenones in International Marine Global Change Studies MD952043 core. This record has a time resolution of ~200 years allowing the study of millennial-scale and even shorter climatic changes. The observed SST curve displays characteristic sequences of extremely rapid warming and cooling events along the glacial period. Comparison of this Alboran record with delta18O from Greenland ice (Greenland Ice Sheet Project 2 core) shows a strong parallelism between these SST oscillations and the Dansgaard-Oeschger events. Five prominent cooling episodes standing out in the SST profile are accompanied by an anomalous high abundance of Neogloboquadrina pachyderma sinistral which is confined to the duration of these cold intervals. These features and the isotopic record reflect drastic changes in the surface hydrography of the Alboran Sea in association with Heinrich events Hl-5.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modern subarctic Pacific is characterized by a steep salinity-driven surface water stratification, which hampers the supply of saline and nutrient-rich deeper waters into the euphotic zone, limiting productivity. However, the strength of the halocline might have varied in the past. Here, we present diatom oxygen (d18Odiat) and silicon (d30Sidiat) stable isotope data from the open subarctic North-East (NE) Pacific (SO202-27-6; Gulf of Alaska), in combination with other proxy data (Neogloboquadrina pachydermasin d18O, biogenic opal, Ca and Fe intensities, IRD), to evaluate changes in surface water hydrography and productivity during Marine Isotope Stage (MIS) 3, characterized by millennial-scale temperature changes (Dansgaard-Oeschger (D-O) cycles) documented in Greenland ice cores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geochemical implications of thermally driven flow of seawater through oceanic crust on the mid-ocean ridge flank have been examined on a well-studied 80 km transect across the eastern flank of the Juan de Fuca Ridge at 48°N, using porewater and basement fluid samples obtained on ODP Leg 168. Fluid flow is recognised by near-basement reversals in porewater concentration gradients from altered values in the sediment section to seawater-like values in basaltic basement. In general, the basement fluids become more geochemically evolved with distance from the ridge and broadly follow basement temperature which ranges from not, vert, similar16° to 63°C. Although thermal effects of advective heat exchange are only seen within 20 km east of where basement is exposed near the ridge crest, chemical reactivity extends to all sites. Seawater passing through oceanic crust has reacted with basement rocks leading to increases in Ca2+ and decreases in alkalinity, Mg2+, Na+, K+, SO42- and delta18O. Sr isotope exchange between seawater and oceanic crust off axis is unequivocally demonstrated with endmember 87Sr/86Sr ~ 0.707. Evidence of more evolved fluids is seen at sites where rapid upwelling of fluids through sediments occurs. Chlorinities of the basement fluids are consistent with post-glacial seawater and thus a short residence time in the crust. Rates of lateral flow have been by estimated by modelling porewater sulphate gradients, using Cl as a glacial chronometer, and from radiocarbon dating of basal fluids. All three methods reveal fluid flow with 14C ages less than 10,000 yr and particle velocities of ~1-5 m/yr, in agreement with thermally constrained volumetric flow rates through a ~600 m thick permeable layer of ~10% porosity. Delta(element)/Delta(heat) extraction ratios are similar to values for ridge-crest hydrothermal systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermokarst lakes are a widespread feature of the Arctic tundra, in which highly dynamic processes are closely connected with current and past climate changes. We investigated late Quaternary sediment dynamics, basin and shoreline evolution, and environmental interrelations of Lake El'gene-Kyuele in the NE Siberian Arctic (latitude 71°17'N, longitude 125°34'E). The water-body displays thaw-lake characteristics cutting into both Pleistocene Ice Complex and Holocene alas sediments. Our methods are based on grain size distribution, mineralogical composition, TOC/N ratio, stable carbon isotopes and the analysis of plant macrofossils from a 3.5-m sediment profile at the modern eastern lake shore. Our results show two main sources for sediments in the lake basin: terrigenous diamicton supplied from thermokarst slopes and the lake shore, and lacustrine detritus that has mainly settled in the deep lake basin. The lake and its adjacent thermokarst basin rapidly expanded during the early Holocene. This climatically warmer than today period was characterized by forest or forest tundra vegetation composed of larches, birch trees and shrubs. Woodlands of both the HTM and the Late Pleistocene were affected by fire, which potentially triggered the initiation of thermokarst processes resulting later in lake formation and expansion. The maximum lake depth at the study site and the lowest limnic bioproductivity occurred during the longest time interval of ~7 ka starting in the Holocene Thermal Maximum and lasting throughout the progressively cooler Neoglacial, whereas partial drainage and an extensive shift of the lake shoreline occurred ~0.9 cal. ka BP. Correspondingly, this study discusses different climatic and environmental drivers for the dynamics of a thermokarst basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution record of foraminiferal fragmentation (a dissolution indicator) for the last 250 k.y. (isotopic Stages 1 to 7) is identified in the upper 61.9 m of Ocean Drilling Program (ODP) Hole 828A, west Vanuatu. This record is comparable in detail to the atmospheric CO2 record and the d18O stack. Phase shifts between preservation spikes and maximum ice volumes (d18O of Globigerinoides sacculifer) are analogous to those on Ontong Java Plateau. Mass spectrometer (AMS14C) dating of a sample taken at the base of dissolution cycle B1 and the position of the last glacial maximum indicates a lag in time of ~8 k.y. in the Vanuatu region for the last glacial termination. When dissolution spikes are compared with minimum ice volumes there is no phase shift for the last two glacial terminations. The difference between Vanuatu and Ontong Java Plateau may be explained by local CO2 sinks and the interplay between intermediate and deep water masses. Terrigenous input increasingly affected sediment of Hole 828A on the North d'Entrecasteaux Ridge (NDR) as it approached Espiritu Santo Island. Mud and silt suspended in mid-water flows become important after 125 ka, while turbidites bypass the New Hebrides Trench only towards the last glacial maximum (LGM). Terrigenous supply seems to affect the lysocline profile that changed from an "open ocean" to a "near continent" type, thus favoring dissolution. Fragmentation of planktonic foraminifers is a more sensitive indicator of lysocline variations than is foraminiferal susceptibility to dissolution, the foraminiferal dissolution index, the abundance of benthic foraminifers, or CaCO3 content. A modern foraminiferal lysocline for the neighboring area (between 10°S and 30°S, and 160°E and 180°E) is found at 3.1 km below sea level, compared to west Vanuatu where it is shallower. The past lysocline level was deeper than 3086 m during intervals of dissolution minima, and ranged from ~2550 to 3000 m during intervals of dissolution maxima. The high sedimentation rates (in the order of 10 to 50 cm/k.y.) found in Hole 828A offer a great potential for future high-resolution studies either in this hole or other western localities along the NDR. Areas of high sedimentation near continental regions have been discarded for paleoceanographic and/or paleoclimatic studies. Nonetheless, conditions analogous to those found in Hole 828A are expected to occur in many trench areas around the world where mid-water flows have preserved as yet undiscovered fine high-resolution sedimentary records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid climate changes at the onset of the last deglaciation and during Heinrich Event H4 were studied in detail at IMAGES cores MD95-2039 and MD95-2040 from the Western Iberian margin. A major reorganisation of surface water hydrography, benthic foraminiferal community structure, and deepwater isotopic composition commenced already 540 years before the Last Isotopic Maximum (LIM) at 17.43 cal. ka and within 670 years affected all environments. Changes were initiated by meltwater spill in the Nordic Seas and northern North Atlantic that commenced 100 years before concomitant changes were felt off western Iberia. Benthic foraminiferal associations record the drawdown of deepwater oxygenation during meltwater and subsequent Heinrich Events H1 and H4 with a bloom of dysoxic species. At a water depth of 3380 m, benthic oxygen isotopes depict the influence of brines from sea ice formation during ice-rafting pulses and meltwater spill. The brines conceivably were a source of ventilation and provided oxygen to the deeper water masses. Some if not most of the lower deep water came from the South Atlantic. Benthic foraminiferal assemblages display a multi-centennial, approximately 300-year periodicity of oxygen supply at 2470-m water depth. This pattern suggests a probable influence of atmospheric oscillations on the thermohaline convection with frequencies similar to Holocene climate variations. For Heinrich Events H1 and H4, response times of surface water properties off western Iberia to meltwater injection to the Nordic Seas were extremely short, in the range of a few decades only. The ensuing reduction of deepwater ventilation commenced within 500-600 years after the first onset of meltwater spill. These fast temporal responses lend credence to numerical simulations that indicate ocean-climate responses on similar and even faster time scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-amplitude, rapid climate fluctuations are common features of glacial times. The prominent changes in air temperature recorded in the Greenland ice cores (Dansgaard et al., 1993, doi:10.1038/339532a0; Grootes et al., 1993 doi:10.1038/366552a0) are coherent with shifts in the magnitude of the northward heat flux carried by the North Atlantic surface ocean (Bond et al., 1993, doi:10.1038/365143a0; Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005); changes in the ocean's thermohaline circulation are a key component in many explanations of this climate flickering (Broecker, 1997, doi:10.1126/science.278.5343.1582). Here we use stable-isotope and other sedimentological data to reveal specific oceanic reorganizations during these rapid climate-change events. Deep water was generated more or less continuously in the Nordic Seas during the latter part of the last glacial period (60 to 10 thousand years ago), but by two different mechanisms. The deep-water formation occurred by convection in the open ocean during warmer periods (interstadials). But during colder phases (stadials), a freshening of the surface ocean reduced or stopped open-ocean convection, and deep-water formation was instead driven by brine-release during sea-ice freezing. These shifting magnitudes and modes nested within the overall continuity of deep-water formation were probably important for the structuring and rapidity of the prevailing climate changes.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diatom assemblages from Holsteinsborg Dyb on the West Greenland shelf were analysed with high temporal resolution for the last 1200 years. A high degree of consistency between changes in frequency of selected diatom species and instrumental data from the same area during the last 70 years confirms the reliability of diatoms (particularly sea-ice species and warm-water species) for the study of palaeoceanographic changes in this area. A general cooling trend with some fluctuations is marked by an increase in sea-ice species throughout the last 1200 years. A relatively warm period with increased influence of Atlantic water masses of the Irminger Current (IC) is found at AD 750-1330, although with some oceanographic variability after AD 1000. A pronounced oceanographic shift occurred at AD 1330, corresponding in time to the transition from the so-called 'Medieval Warm Period' (MWP) to the 'Little Ice Age' (LIA). The LIA cold episode is characterized by three intervals with particularly cold sea-surface conditions at AD 1330-1350, AD 1400-1575 and AD 1660-1710 as a result of variable influence of Polar waters in the area. During the last 70 years, two relatively warm periods and one cold period (the early 1960s to mid-1990s) are indicated by changes in the diatom components. Our study demonstrates that sedimentary records on the West Greenland shelf provide valuable palaeoenvironment data that confirm a linkage between local and large-scale North Atlantic oceanographic and atmospheric oscillations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past 40,000 years, global climate has moved into and out of a full glacial period, with the deglaciation marked by several millennial-scale rapid climate change events. Here we investigate the ecological response of deep-sea coral communities to both glaciation and these rapid climate change events. We find that the deep-sea coral populations of Desmophyllum dianthus in both the North Atlantic and the Tasmanian seamounts expand at times of rapid climate change. However, during the more stable Last Glacial Maximum, the coral population globally retreats to a more restricted depth range. Holocene populations show regional patterns that provide some insight into what causes these dramatic changes in population structure. The most important factors are likely responses to climatically driven changes in productivity, [O2] and [CO3]2-.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radiocarbon contents of various biomarkers extracted from the varve-counted sediments of Saanich Inlet, Canada, were determined to assess their applicability for dating purposes. Calibrated ages obtained from the marine planktonic archaeal biomarker crenarchaeol compared favorably with varve-count ages. The same conclusion could be drawn for a more general archaeal biomarker (GDGT-0), although this biomarker proved to be less reliable due to its less-specific origin. The results also lend support to earlier indications that marine crenarchaeota use dissolved inorganic carbon (DIC) as their carbon source. The average reservoir age offset DR of 430 years, determined using the crenarchaeol radiocarbon ages, varied by ±110 years. This may be caused by natural variations in ocean-atmosphere mixing or upwelling at the NE Pacific coast but variability may also be due to an inconsistency in the marine calibration curve when used at sites with high reservoir ages.