619 resultados para 400 miles from F. Polynesia
Resumo:
Rapid climate changes at the onset of the last deglaciation and during Heinrich Event H4 were studied in detail at IMAGES cores MD95-2039 and MD95-2040 from the Western Iberian margin. A major reorganisation of surface water hydrography, benthic foraminiferal community structure, and deepwater isotopic composition commenced already 540 years before the Last Isotopic Maximum (LIM) at 17.43 cal. ka and within 670 years affected all environments. Changes were initiated by meltwater spill in the Nordic Seas and northern North Atlantic that commenced 100 years before concomitant changes were felt off western Iberia. Benthic foraminiferal associations record the drawdown of deepwater oxygenation during meltwater and subsequent Heinrich Events H1 and H4 with a bloom of dysoxic species. At a water depth of 3380 m, benthic oxygen isotopes depict the influence of brines from sea ice formation during ice-rafting pulses and meltwater spill. The brines conceivably were a source of ventilation and provided oxygen to the deeper water masses. Some if not most of the lower deep water came from the South Atlantic. Benthic foraminiferal assemblages display a multi-centennial, approximately 300-year periodicity of oxygen supply at 2470-m water depth. This pattern suggests a probable influence of atmospheric oscillations on the thermohaline convection with frequencies similar to Holocene climate variations. For Heinrich Events H1 and H4, response times of surface water properties off western Iberia to meltwater injection to the Nordic Seas were extremely short, in the range of a few decades only. The ensuing reduction of deepwater ventilation commenced within 500-600 years after the first onset of meltwater spill. These fast temporal responses lend credence to numerical simulations that indicate ocean-climate responses on similar and even faster time scales.
Resumo:
We present high-resolution (2-3 kyr) benthic foraminiferal stable isotopes in a continuous, well-preserved sedimentary archive from the West Pacific Ocean (Ocean Drilling Program Site 1146), which track climate evolution in unprecedented resolution over the period 12.9 to 8.4 Ma. We developed an astronomically tuned chronology over this interval and integrated our new records with published isotope data from the same location to reconstruct long-term climate and ocean circulation development between 16.4 and 8.4 Ma. This extended perspective reveals that the long eccentricity (400 kyr) cycle is prominently encoded in the d13C signal over most of the record, reflecting long-term fluctuations in the carbon cycle. The d18O signal closely follows variations in short eccentricity (100 kyr) and obliquity (41 kyr). In particular, the obliquity cycle is prominent from ~14.6 to 14.1 Ma and from ~9.8 to 9.2 Ma, when high-amplitude variability in obliquity is congruent with low-amplitude variability in short eccentricity. The d18O curve is additionally characterized by a series of incremental steps at ~14.6, 13.9, 13.1, 10.6, 9.9, and 9.0 Ma, which we attribute to progressive deep water cooling and/or glaciation episodes following the end of the Miocene climatic optimum. On the basis of d18O amplitudes, we find that climate variability decreased substantially after ~13 Ma, except for a remarkable warming episode at ~10.8-10.7 Ma at peak insolation during eccentricity maxima (100 and 400 kyr). This transient warming, associated with a massive negative carbon isotope shift, is reminiscent of intense global warming events at eccentricity maxima during the Miocene climatic optimum.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.