424 resultados para 25 hydroxycolecalciferol 26
Resumo:
The McMurdo Dry Valleys, Antarctica (MDV) are among the oldest landscapes on Earth, and some landforms there present an intriguing apparent contradiction such that millions of years old surface deposits maintain their meter-scale morphology despite the fact that measured erosion rates are 0.1-4 m/Ma. We analyzed the concentration of cosmic ray-produced 10Be and 26Al in quartz sands from regolith directly above and below two well-documented ash deposits in the MDV, the Arena Valley ash (40Ar/39Ar age of 4.33 Ma) and the Hart ash (K-Ar age of 3.9 Ma). Measured concentrations of 10Be and 26Al are significantly less than expected given the age of the in situ air fall ashes and are best interpreted as reflecting the degradation rate of the overlying sediments. The erosion rate of the material above the Arena Valley ash that best explains the observed isotope profiles is 3.5 ± 0.41 x 10**-5 g/cm**2/yr (~0.19 m/Ma) for the past ~4 Ma. For the Hart ash, the erosion rate is 4.8 ± 0.21 x 10**-4 g/cm**2/yr (~2.6 m/Ma) for the past ~1 Ma. The concentration profiles do not show signs of mixing, creep, or deflation caused by sublimation of ground ice. These results indicate that the slow, steady lowering of the surface without vertical mixing may allow landforms to maintain their meter-scale morphology even though they are actively eroding.
Resumo:
Clay-mineral distributions in the Arctic Ocean and the adjacent Eurasian shelf areas are discussed to identify source areas and transport pathways of terrigenous material in the Arctic Ocean. The main clay minerals in Eurasian Arctic Ocean sediments are illite and chlorite. Smectite and kaolinite occur in minor amounts in these sediments, but show strong variations in the shelf areas. These two minerals are therefore reliable in reconstructions of source areas of sediments from the Eurasian Arctic. The Kara Sea and the western part of the Laptev Sea are enriched in smectite, with highest values of up to 70% in the deltas of the Ob and Yenisey rivers. Illite is the dominant clay mineral in all the investigated sediments except for parts of the Kara Sea. The highest concentrations with more than 70% illite occur in the East Siberian Sea and around Svalbard. Chlorite represents the clay mineral with lowest concentration changes in the Eastern Arctic, ranging between 10 and 25%. The main source areas for kaolinite in the Eurasian Arctic are Mesozoic sedimentary rocks on Franz-Josef Land islands. Based on clay-mineral data, transport of the clay fraction via sea ice is of minor importance for the modern sedimentary budget in the Arctic basins.
Resumo:
The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.
Resumo:
Geoelectrical soundings were carried out in 29 different places in order to find permafrost and to measure its thickness. In most places above timber Iine a permafrost thickness of 10-50 m was recorded. Permafrost was found at sites with thin snow cover during winter. Here, deflation phenomena on the summits of fjells indicate the occurence of permafrost, Vegetation type might be a good indicator of permafrost, too. It seems obvious that permafrost exists extensively on fjell summits of northern Finland.
Resumo:
The cores and dredges described at this site were taken on the RIDA cruise from 1 May until 25 May 1984 by the Muséum National d'Histoire Naturelle from the R/V Marion Dufresne. A total of 45 cores and dredges were recovered along with underwater camera runs. They are available at MNHN for sampling and study.
Resumo:
The Indian Ocean covers approximately 73.5 * 10**6 km**3 from 25°N to 67°S and from 20° to 120°E. Several legs of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP) have operated in its waters, many penetrating the Cretaceous. Most of the scientific drill sites are DSDP related and thus pre-dated modern biostratigraphic conventions. Foraminifers and calcareous nannoplankton were by far the dominant fossil groups studied in the earlier work, supplemented occasionally by studies of other fossil groups, The results of the Ocean Drilling Project phase are yet too young to be fully integrated but have been based on a broader range of techniques and fossil groups. During most of the Cretaceous, the proto-Indian Ocean basin lay in middle to high latitudes. Thus, it is unrealistic to expect successful routine application of low-latitude zonations. No planktonic foraminifer zonal scheme has been developed for the Indian Ocean basin for several reasons. There are no sections with complete or even significant partial sections to allow development of such a zonation. Carbonate compensation depth (CCD) effects have been marked in most sections, and significant intervals are devoid of planktonic foraminifers. The Indian Ocean now covers a great latitudinal range from tropics to polar regions and, at first glance, no scheme can be expected to be applicable over that entire range. In the Cretaceous the area was much smaller, though expanding progressively, and the paleolatitude range was quite small. Calcareous nannoplankton have proved valuable in dating Indian Ocean Cretaceous sediments and have, perhaps in contrast with the foraminifers, been consistently a more reliable means of applying zonal schemes developed elsewhere. For the Albian-Aptian, zonations based on well-known benthic foraminifer lineages (Scheibnerova, 1974) have been useful when nothing else was available or effective. Palynology has been used little, but where used, has proved excellent. It has the added value of providing valuable information on nearby terrestrial vegetation as the fossils were resistant to dissolution. Normally, when different fossil groups have been applied to a section, the results have been compatible or compatible to an acceptable degree. There are a few instances where incompatibility is noteworthy, and Site 263 is a classic example, as even two calcareous nannoplankton studies show irreconcilable differences here. All groups gave different results, but one benthic foraminifer analysis agreed with one calcareous nannoplankton study.
Annotated record of the detailed examination of Mn deposits from R/V Robert Conrad Cruise 8 stations
Resumo:
The cores and dredges described in this report were taken during the Robert Conrad Cruise 8 from November 1963 until August 1964 by the Lamont Geological Observatory, Columbia University from the R/V Robert Conrad. A total of 140 cores and dredges were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
The collection of ferromanganese nodules at Naturhistoriska Riksmuseet, Stockholm, Sweden has been donated by Pr. Boström, K. and Ingri, J. from the Technical University of Lulea. They have been collected in the Bothnia Gulf, the Baltic Sea anfd the Barents sea from 1976 until 1985. In 1997 it is was put to the care custody of the Laboratory for Isotope Geology (LIG) of NRM. As part of the Access Project at LIG, Curt Boman has gone through the collection and established a database with detailed information about the samples it contains. Ferromanganese nodules typically display a rounded shape and are formed by redox processes at the interface between the seabed sediment and water. In addition to iron and manganese they also contain other metal elements. Nodules chemical composition reflects the substances found in the sediment to which they are associated. Since the nodules grow continuously, they reflect changes in the sedimentary environment chemistry on a yearly basis, which makes them very interesting as environmental archives. The nodules can be found locally in large quantities and due to their metal content they are also economically interesting as a source of raw materials.
Resumo:
The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5° to 6°C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.
Resumo:
The cores and dredges described in this report were taken during the Vema 17 Expedition from December 1960 until October 1961 by the Lamont Geological Observatory, Columbia University from the R/V Vema. An approximate total of 210 cores, dredges and camera stations were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
Ferromanganese concretions cover large areas of the Gulf of Bothnia. They are flat to well-rounded, the rounded ones being richer in oxyhydroxides of iron and manganese. Rounded and ellipsoidal nodules, particularly those in the northern Gulf of Bothnia, are richest in Mn, Ni, Ba and Cu, which probably coexist in a Mn oxyhydroxide phase. Flat nodules are enriched in Fe, P, rare earths and As, probably associated with an Fe oxy-hydroxide component. Aluminum, V, Cr and Ti occur in still another phase. The sediments of the gulf generally consist of a 10-50 mm-thick layer of oxidized surface sediment, enriched in Mn, Ba, P and Ni lying on top of reduced sediments which are diagenetically depleted in these elements. The remobilized elements have redeposited in the nodules, but this process cannot explain the origin of all the nodular material. Some released Mn, Ba and Ni furthermore enter into suspended phases, which eventually leave the Baltic Sea. The economic value of the nodules in the Gulf of Bothnia is probably limited at present.
Resumo:
The concentration of C37-C39 long-chain alkenones and alkenes were determined in surface water and surface sediment samples from the subpolar waters of the Southern Ocean. Distributions of these compounds were similar in both sample sets indicating little differential degradation between or within compound classes. The relative amounts of the tri- to tetra-unsaturated C37 alkenones increased with increasing temperature for temperatures below 6°C similar to the di- and tri-unsaturated C37 alkenones. The C37 di-, tri-, and tetra-unsaturated methyl alkenones are used in paleotemperature calculations via the U37K and the U37K ratios. In these datasets, the relative abundances of the C37:2 and the C37.3 alkenones as a proportion of the total C37 alkenones were opposite and strongly related to temperature (the latter with more scatter), but the abundance of the C37:4 alkenone showed no relationship with temperature. The original definition of U37K includes the abundance of 37:4 in both the numerator and denominator, and thus it is perhaps not surprising that there is considerable scatter in the values obtained for U37K at low temperatures. Of the two, we suggest that U37K' is the better parameter for use in paleotemperature estimations, even in cold locations. U37K' values in the sediments fall on virtually the same regression line obtained for the water column samples of Sikes and Volkman (1993, doi:10.1016/0016-7037(93)90120-L), indicating that their calibration is suitable for use in Southern Ocean sediments. The comparison of water column data with sedimentary temperature estimates suggests that the alkenone distributions are dominated by contributions from the summer when the biomass of Emiliania huxleyi and presumably flux to the sediment, is expected to be high.
Resumo:
Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.
Resumo:
The solid phases from surface sediments, atmospheric dusts, and rivers of the Indian Ocean environment have been analyzed for their clay minerals and quartz. Such data have been used to delimit the transport paths and sources of the detrital minerals in the oceanic deposits. Diagnostic in distinguishing fluvial and eolian inputs to the northern Indian Ocean is a combination of the clay mineral assemblages and of their geographic distributions. River borne solids are the primary components of the Bay of Bengal deposits. The eastern part receives its continental input through the Ganges-Brahmaputra river system, while drainage of the Indian Peninsula by rivers introduces solids to the western part. The former materials are characterized by high illite and chlorite in the clay mineral assemblages; the latter by montmorillonite. The winds over the Bay bear distinctive dust burdens based upon their directions. However, their contributions to the sediments are insignificant. The eastern sector of the Arabian Sea receives major contributions of continental debris from the rivers and the high montmorillonite levels clearly indicate a source in the Indian Peninsula. The rest of the Sea appears to receive most of its land-derived materials from the north, perhaps the desert regions of northern India and West Pakistan, and they are wind-borne. These materials are also transported to the equatorial regions of the Indian Ocean. A gradient in attapulgite, just north of the equator, may indicate an eolian contribution to the Arabian Sea from the African continent. The halogenated hydrocarbon pesticides were assayed in the southwest monsoon winds and enter the Bay of Bengal at levels of a half ton per month, an amount comparable to those introduced by other wind and river systems to the marine environment.