214 resultados para 2005-09-BS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study combined data on fin whale Balaenoptera physalus, humpback whale Megaptera novaeangliae, minke whale B. acutorostrata, and sei whale B. borealis sightings from large-scale visual aerial and ship-based surveys (248 and 157 sightings, respectively) with synoptic acoustic sampling of krill Meganyctiphanes norvegica and Thysanoessa sp. abundance in September 2005 in West Greenland to examine the relationships between whales and their prey. Krill densities were obtained by converting relationships of volume backscattering strengths at multiple frequencies to a numerical density using an estimate of krill target strength. Krill data were vertically integrated in 25 m depth bins between 0 and 300 m to obtain water column biomass (g/m**2) and translated to density surfaces using ordinary kriging. Standard regression models (Generalized Additive Modeling, GAM, and Generalized Linear Modeling, GLM) were developed to identify important explanatory variables relating the presence, absence, and density of large whales to the physical and biological environment and different survey platforms. Large baleen whales were concentrated in 3 focal areas: (1) the northern edge of Lille Hellefiske bank between 65 and 67°N, (2) north of Paamiut at 63°N, and (3) in South Greenland between 60 and 61° N. There was a bimodal pattern of mean krill density between depths, with one peak between 50 and 75 m (mean 0.75 g/m**2, SD 2.74) and another between 225 and 275 m (mean 1.2 to 1.3 g/m**2, SD 23 to 19). Water column krill biomass was 3 times higher in South Greenland than at any other site along the coast. Total depth-integrated krill biomass was 1.3 x 10**9 (CV 0.11). Models indicated the most important parameter in predicting large baleen whale presence was integrated krill abundance, although this relationship was only significant for sightings obtained on the ship survey. This suggests that a high degree of spatio-temporal synchrony in observations is necessary for quantifying predator-prey relationships. Krill biomass was most predictive of whale presence at depths >150 m, suggesting a threshold depth below which it is energetically optimal for baleen whales to forage on krill in West Greenland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is shown that in 2002-2005 mass development of coccolithofore Emiliania huxleyi on the Gelendzhik shelf (northeast Black Sea) occurred annually and in May-June its abundance reached 1500000 cells/l. In 2004-2005 bloom of E. huxleyi was accompanied by mass development of diatom alga Chaetoceros subtilis var. abnormis f. simplex (600000-900000 cells/l). For the first time it was registered as a dominating form of Black Sea phytoplankton. Small flagellates and picoplankton algae played a noticeable role in phytoplankton throughout the entire period of the studies. Meanwhile in the early summer period the bulk of biomass consisted of coccolithophores (50-60%), while in the late summer period diatomaceous algae dominated (50-70%). Among ecological factors that favor coccolithophore development one may note microstratification of the upper mixed layer at a high illumination level and high temperature in surface waters (18-21°C). Terrigenous runoff during the rainy period had a negative effect on E. huxleyi development, while storms dispersed the population over the upper mixed layer. A wind-induced near-shore upwelling stimulated development of diatoms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Upwelling velocities w in the equatorial band are too small to be directly observed. Here, we apply a recently proposed indirect method, using the observed helium isotope (3He or 4He) disequilibria in the mixed layer. The helium data were sampled from three cruises in the eastern tropical Atlantic in September 2005 and June/July 2006. A one-dimensional two-box model was applied, where the helium air-sea gas exchange is balanced by upwelling from 3He-rich water below the mixed layer and by vertical mixing. The mixing coefficients Kv were estimated from microstructure measurements, and on two of the cruises, Kv exceeded 1 x 10**-4 m**2/s, making the vertical mixing term of the same order of magnitude as the gas exchange and the upwelling term. In total, helium disequilibrium was observed on 54 stations. Of the calculated upwelling velocities, 48% were smaller than 1.0 x 10**-5 m/s, 19% were between 1.0 and 2.0 x 10**-5 m/s, 22% were between 2.0 and 4.0 x 10**-5 m/s, and on 11% of upwelling velocities exceeded this limit. The highest upwelling velocities were found in late June 2006. Meridional upwelling distribution indicated an equatorial asymmetry with higher vertical velocities between the equator and 1° to 2° south compared to north of the equator, particularly at 10°W. Associated heat flux into the mixed layer could be as high as 138 W/m**2, but this depends strongly on the chosen depths where the upwelled water comes from. By combining upwelling velocities with sea surface temperature and productivity distributions, a mean monthly equatorial upwelling rate of 19 Sv was estimated for June 2006 and a biweekly mean of 24 Sv was estimated for September 2005.