584 resultados para 125-782A


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 125 recovered serpentined harzburgites and dunites from a total of jive sites on the crests and flanks of two serpen finite seamounts, Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc. These are some of the first extant forearc peridotites reported in the literature and they provide a window into oceanic, supra-subduction zone (SSZ) mantle processes. Harzbutrgites from both seamounts are very refractory with low modal clinopyroxene (<4%), chrome-rich spinels (cx-number = 0.40-0.80), very low incompatible element contents, and (with the exception of amphibole-bearing samples) U-shaped rare earth element (REE) profiles with positive Eu anomalies. Both sets of peridotites have olivine-spinel equilibration temperatures that are low compared with abyssal peridotites, possibly because of water-assisted diffusional equilibration in the SSZ environment However, other features indicate that the harzburgites from the two seamounts have very different origins. Harzburgites from Conical Seamount are characterized by calculated oxygen fugacities between FMQ (fayalite- magnetite- quartz) - 1.1 (log units) and FMQ + 0.4 which overlap those of mid-ocean ridge basalt (MORB) peridotites. Dunites from Conical Seamotmt contain small amounts of clinopyroxene, orthopyroxene and amphibole and are light REE (LREE) enriched. Moreover; they are considerably more oxidized than the harzburgites to which they are spatially related, with calculated oxygen fugacities of FMQ -0.2 toFMQ + 1.2. Using textural and geochemical evidence, we interpret these harzburgites as residual MORB mantle (from 15 to 20 % fractional melting) which has subsequently been modified by interaction with boninitic melt ivithin the mantle wedge, and these dunites as zones of focusing of this melt in which pyroxene has preferentially been dissolved from the harzbutgite protolith. In contrast, harzburgites from Torishima Forearc Seamount give calculated oxygen fugacities between FMQ + 0.8 and FMQ + l.6, similar to those calculated for other subduction-zone related peridotites and similar to those calculated for the dunites (FMQ + 1.2 to FMQ + 1.8) from the same seamount. In this case, we interpret both the harzburgites and dunites as linked to mantle melting (20-25 % fractional melting) in a supra-subduction zone environment The results thus indicate that the forearc is underlain by at least two types of mantle lithosphere, one being trapped or accreted oceanic lithosphere, the other being lithosphere formed by subduction-related melting. They also demonstrate that both types of mantle lithosphere may have undergone extensive interaction with subduction-derived magmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data describe the flows of nitrogen between different pools and economic sectors within Denmark. The data are stored in an Excel spreadsheet that is divided into a number of worksheets. The National worksheet contains the national flows of nitrogen for the years 1990 to 2010 (note that for some flows, the data series is not complete for all years). These data underlie the national nitrogen flow figures in the main text of the paper. The remaining worksheets contain the data that underlie the figures presented in the detailed description of nitrogen flows between pools/sectors, that is in the Supplementary Material associated with the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The <63-µm fractions of serpentinite muds from two seamounts on the Mariana and Izu-Bonin forearcs were analyzed for mineral composition by X-ray diffraction and for chemical composition by X-ray fluorescence. The silt fraction of the muds consists predominantly of chrysotile, brucite, and ample amorphous constituents. Chlorite and smectite are less abundant components. Of special interest is the occurrence of iowaite, a brucite-like, Cl-bearing mineral with a layered structure. Iowaite was not found in the samples from the summit site of one of the seamounts drilled; however, it is scattered throughout the strata, composing the flanks of both seamounts investigated. No systematic change of the iowaite abundance with depth was observed. The distribution of iowaite is confined to the surface of the flanks of the seamount. Based on the distribution on the mineral and its chemical composition, we suggest that the iowaite formed by oxidation of some of the ferrous iron in brucite contained in the serpentine mud as it contacted abyssal seawater during protrusion onto the seafloor. The resulting positive charge imparted to the brucite was compensated by the uptake of seawater chloride. Consequently, the formation of iowaite is restricted to the seafloor where oxygen and chloride are available for these reactions. The availability of oxygen is considered the limiting factor. We conclude that iowaite formation cannot be a major cause for the low chlorinity of pore fluids inside the seamounts.